Suppr超能文献

用于改善慢性病管理研究和质量改进研究的本体——一个概念框架。

Ontologies to improve chronic disease management research and quality improvement studies - a conceptual framework.

作者信息

Liyanage Harshana, Liaw Siaw-Teng, Kuziemsky Craig, de Lusignan Simon

机构信息

Clinical Informatics, Department of Health Care Management and Policy, University of Surrey, Guildford, UK.

出版信息

Stud Health Technol Inform. 2013;192:180-4.

Abstract

There is a growing burden of chronic non-communicable disease (CNCD). Managing CNCDs requires use of multiple sources of health and social care data, and information about coordination and outcomes. Many people with CNCDs have multimorbidity. Problems with data quality exacerbate challenges in measuring quality and health outcomes especially where there is multimorbidity. We have developed an ontological toolkit to support research and quality improvement studies in CNCDs using heterogeneous data, with diabetes mellitus as an exemplar. International experts held a workshop meeting, with follow up discussions and consensus building exercise. We generated conceptual statements about problems with a CNCD that ontologies might support, and a generic reference model. There were varying degrees of consensus. We propose a set of tools, and a four step method: (1) Identification and specification of data sources; (2) Conceptualisation of semantic meaning; (3) How available routine data can be used as a measure of the process or outcome of care; (4) Formalisation and validation of the final ontology.

摘要

慢性非传染性疾病(CNCD)的负担日益加重。管理慢性非传染性疾病需要使用多种健康和社会护理数据来源,以及有关协调和结果的信息。许多患有慢性非传染性疾病的人都患有多种疾病。数据质量问题加剧了衡量质量和健康结果的挑战,尤其是在存在多种疾病的情况下。我们开发了一个本体工具包,以支持使用异构数据进行的慢性非传染性疾病研究和质量改进研究,并以糖尿病为例。国际专家召开了一次研讨会,并进行了后续讨论和共识达成活动。我们生成了关于本体可能支持的慢性非传染性疾病问题的概念性陈述,以及一个通用参考模型。达成了不同程度的共识。我们提出了一套工具和一种四步法:(1)识别和指定数据源;(2)语义含义的概念化;(3)如何将可用的常规数据用作护理过程或结果的衡量标准;(4)最终本体的形式化和验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验