Suppr超能文献

运用数据挖掘技术发现医生用药处方的实践模式——一项探索性研究。

Using data mining techniques on discovering physician practice patterns regarding to medication prescription - an exploratory study.

作者信息

Feng Jianzhou, Shen Weijia, Cao Feng, Ni Yuan, Cai Peng, Sun Wen, Li Xiang

机构信息

Shanghai Jiao Tong University, Shanghai, China.

出版信息

Stud Health Technol Inform. 2013;192:974.

Abstract

In this paper, we propose a data mining method for exploring the decision-making processes of physicians from electronic patient records and test it on the medical records of patients with type-2 diabetes mellitus. This method runs in two modes: general and partitioned. In the general mode, it mines rules from the whole medical records. In the partitioned mode, with a given partition factor, medical records are assigned into categories and a corresponding set of rules will be discovered for each category. Medication prescription predictions can be provided based on these rules. By comparing mined rules and prescription prediction accuracy under different modes, we discover that: 1) both the averaged precision and recall rate of the general mode can reach around 80%; 2) physicians tend to conform to the guideline instead of having their own preferences; 3) the medication decision can be affected by some hidden factors. These findings suggest this method show promise in discovering physician practice patterns and obtaining insights from real medical records.

摘要

在本文中,我们提出了一种数据挖掘方法,用于从电子病历中探索医生的决策过程,并在2型糖尿病患者的病历上进行了测试。该方法有两种运行模式:通用模式和分区模式。在通用模式下,它从整个病历中挖掘规则。在分区模式下,根据给定的分区因子,将病历分配到不同类别,并为每个类别发现相应的一组规则。基于这些规则可以提供用药处方预测。通过比较不同模式下挖掘出的规则和处方预测准确性,我们发现:1)通用模式的平均精确率和召回率都能达到80%左右;2)医生倾向于遵循指南而非有自己的偏好;3)用药决策可能会受到一些隐藏因素的影响。这些发现表明该方法在发现医生的实践模式和从真实病历中获取见解方面具有潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验