Feng Jianzhou, Shen Weijia, Cao Feng, Ni Yuan, Cai Peng, Sun Wen, Li Xiang
Shanghai Jiao Tong University, Shanghai, China.
Stud Health Technol Inform. 2013;192:974.
In this paper, we propose a data mining method for exploring the decision-making processes of physicians from electronic patient records and test it on the medical records of patients with type-2 diabetes mellitus. This method runs in two modes: general and partitioned. In the general mode, it mines rules from the whole medical records. In the partitioned mode, with a given partition factor, medical records are assigned into categories and a corresponding set of rules will be discovered for each category. Medication prescription predictions can be provided based on these rules. By comparing mined rules and prescription prediction accuracy under different modes, we discover that: 1) both the averaged precision and recall rate of the general mode can reach around 80%; 2) physicians tend to conform to the guideline instead of having their own preferences; 3) the medication decision can be affected by some hidden factors. These findings suggest this method show promise in discovering physician practice patterns and obtaining insights from real medical records.
在本文中,我们提出了一种数据挖掘方法,用于从电子病历中探索医生的决策过程,并在2型糖尿病患者的病历上进行了测试。该方法有两种运行模式:通用模式和分区模式。在通用模式下,它从整个病历中挖掘规则。在分区模式下,根据给定的分区因子,将病历分配到不同类别,并为每个类别发现相应的一组规则。基于这些规则可以提供用药处方预测。通过比较不同模式下挖掘出的规则和处方预测准确性,我们发现:1)通用模式的平均精确率和召回率都能达到80%左右;2)医生倾向于遵循指南而非有自己的偏好;3)用药决策可能会受到一些隐藏因素的影响。这些发现表明该方法在发现医生的实践模式和从真实病历中获取见解方面具有潜力。