Suppr超能文献

海洋细菌嗜热栖热菌 Saccharophagus degradans 家族 50 外切-β-琼脂酶 Aga50D 的底物识别和水解。

Substrate recognition and hydrolysis by a family 50 exo-β-agarase, Aga50D, from the marine bacterium Saccharophagus degradans.

机构信息

From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada and.

出版信息

J Biol Chem. 2013 Sep 27;288(39):28078-88. doi: 10.1074/jbc.M113.491068. Epub 2013 Aug 6.

Abstract

The bacteria that metabolize agarose use multiple enzymes of complementary specificities to hydrolyze the glycosidic linkages in agarose, a linear polymer comprising the repeating disaccharide subunit of neoagarobiose (3,6-anhydro-l-galactose-α-(1,3)-d-galactose) that are β-(1,4)-linked. Here we present the crystal structure of a glycoside hydrolase family 50 exo-β-agarase, Aga50D, from the marine microbe Saccharophagus degradans. This enzyme catalyzes a critical step in the metabolism of agarose by S. degradans through cleaving agarose oligomers into neoagarobiose products that can be further processed into monomers. The crystal structure of Aga50D to 1.9 Å resolution reveals a (β/α)8-barrel fold that is elaborated with a β-sandwich domain and extensive loops. The structures of catalytically inactivated Aga50D in complex with non-hydrolyzed neoagarotetraose (2.05 Å resolution) and neoagarooctaose (2.30 Å resolution) provide views of Michaelis complexes for a β-agarase. In these structures, the d-galactose residue in the -1 subsite is distorted into a (1)S3 skew boat conformation. The relative positioning of the putative catalytic residues are most consistent with a retaining catalytic mechanism. Additionally, the neoagarooctaose complex showed that this extended substrate made substantial interactions with the β-sandwich domain, which resembles a carbohydrate-binding module, thus creating additional plus (+) subsites and funneling the polymeric substrate through the tunnel-shaped active site. A synthesis of these results in combination with an additional neoagarobiose product complex suggests a potential exo-processive mode of action of Aga50D on the agarose double helix.

摘要

能代谢琼脂糖的细菌使用多种具有互补特异性的酶来水解琼脂糖的糖苷键,琼脂糖是一种线性聚合物,由新琼二糖(3,6-脱水-l-半乳糖-α-(1,3)-d-半乳糖)的重复二糖亚基组成,这些亚基通过β-(1,4)-键连接。在这里,我们展示了一种来自海洋微生物 Saccharophagus degradans 的糖苷水解酶家族 50 外切-β-琼脂酶 Aga50D 的晶体结构。该酶通过将琼脂糖寡聚物切割成新琼二糖产物,从而催化琼脂糖代谢的关键步骤,这些产物可以进一步加工成单体。Aga50D 的晶体结构分辨率达到 1.9 Å,揭示了一个(β/α)8-桶折叠结构,该结构通过β-夹心结构域和广泛的环进行了修饰。与未水解的新琼四糖(2.05 Å 分辨率)和新琼八糖(2.30 Å 分辨率)复合物中催化失活的 Aga50D 的结构提供了β-琼脂酶的 Michaelis 复合物的视图。在这些结构中,-1 亚基中的 d-半乳糖残基被扭曲成(1)S3 斜船构象。假定催化残基的相对定位最符合保留催化机制。此外,新琼八糖复合物表明,这种扩展的底物与β-夹心结构域有实质性相互作用,该结构域类似于碳水化合物结合模块,从而创造了额外的加号(+)亚基,并将聚合物底物通过隧道形活性位点引导。将这些结果与另一个新琼二糖产物复合物相结合的综合分析表明,Aga50D 对琼脂糖双螺旋可能具有潜在的外向作用模式。

相似文献

1
Substrate recognition and hydrolysis by a family 50 exo-β-agarase, Aga50D, from the marine bacterium Saccharophagus degradans.
J Biol Chem. 2013 Sep 27;288(39):28078-88. doi: 10.1074/jbc.M113.491068. Epub 2013 Aug 6.
2
Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40.
Appl Environ Microbiol. 2006 May;72(5):3396-405. doi: 10.1128/AEM.72.5.3396-3405.2006.
3
Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: an exo-type beta-agarase producing neoagarobiose.
Appl Microbiol Biotechnol. 2010 Mar;86(1):227-34. doi: 10.1007/s00253-009-2256-5. Epub 2009 Oct 3.
5
Gene cloning, expression and characterisation of a new β-agarase, AgWH50C, producing neoagarobiose from Agarivorans gilvus WH0801.
World J Microbiol Biotechnol. 2014 Jun;30(6):1691-8. doi: 10.1007/s11274-013-1591-y. Epub 2014 Jan 7.
7
Biochemical Characterization and Substrate Degradation Mode of a Novel Exotype β-Agarase from Agarivorans gilvus WH0801.
J Agric Food Chem. 2017 Sep 13;65(36):7982-7988. doi: 10.1021/acs.jafc.7b01533. Epub 2017 Aug 29.
9
Carbohydrase systems of Saccharophagus degradans degrading marine complex polysaccharides.
Mar Drugs. 2011;9(4):645-665. doi: 10.3390/md9040645. Epub 2011 Apr 21.
10
Cloning, expression and characterization of a new agarase-encoding gene from marine Pseudoalteromonas sp.
Biotechnol Lett. 2009 Oct;31(10):1565-70. doi: 10.1007/s10529-009-0042-1. Epub 2009 Jun 6.

引用本文的文献

4
Characterization and Modeling of Thermostable GH50 Agarases from Microbulbifer elongatus PORT2.
Mar Biotechnol (NY). 2021 Oct;23(5):809-820. doi: 10.1007/s10126-021-10065-0. Epub 2021 Sep 30.
5
Architecturally complex -glycopeptidases are customized for mucin recognition and hydrolysis.
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2019220118.
6
The structure of PfGH50B, an agarase from the marine bacterium Pseudoalteromonas fuliginea PS47.
Acta Crystallogr F Struct Biol Commun. 2020 Sep 1;76(Pt 9):422-427. doi: 10.1107/S2053230X20010328. Epub 2020 Aug 19.
7
Genome-Wide Identification and Functional Characterization of β-Agarases in Strain HN897.
Front Microbiol. 2020 Jun 24;11:1404. doi: 10.3389/fmicb.2020.01404. eCollection 2020.
8
Characterization of a Novel α-Neoagarobiose Hydrolase Capable of Preparation of Medium- and Long-Chain Agarooligosaccharides.
Front Bioeng Biotechnol. 2020 Jan 29;7:470. doi: 10.3389/fbioe.2019.00470. eCollection 2019.
10
Recombinant β-agarases: insights into molecular, biochemical, and physiochemical characteristics.
3 Biotech. 2018 Oct;8(10):445. doi: 10.1007/s13205-018-1470-1. Epub 2018 Oct 9.

本文引用的文献

1
Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes.
Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19786-91. doi: 10.1073/pnas.1211002109. Epub 2012 Nov 12.
2
Endo-β-D-1,4-mannanase from Chrysonilia sitophila displays a novel loop arrangement for substrate selectivity.
Acta Crystallogr D Biol Crystallogr. 2012 Nov;68(Pt 11):1468-78. doi: 10.1107/S0907444912034646. Epub 2012 Oct 18.
3
Gene cloning, expression and characterization of a neoagarotetraose-producing β-agarase from the marine bacterium Agarivorans sp. HZ105.
World J Microbiol Biotechnol. 2012 Apr;28(4):1691-7. doi: 10.1007/s11274-011-0977-y. Epub 2011 Dec 27.
4
6
Agar degradation by microorganisms and agar-degrading enzymes.
Appl Microbiol Biotechnol. 2012 May;94(4):917-30. doi: 10.1007/s00253-012-4023-2. Epub 2012 Apr 19.
7
Analysis of keystone enzyme in Agar hydrolysis provides insight into the degradation (of a polysaccharide from) red seaweeds.
J Biol Chem. 2012 Apr 20;287(17):13985-95. doi: 10.1074/jbc.M112.345645. Epub 2012 Mar 5.
8
Identification of a novel agarolytic γ -Proteobacterium Microbulbifer maritimus and characterization of its agarase.
J Basic Microbiol. 2012 Dec;52(6):705-12. doi: 10.1002/jobm.201100315. Epub 2012 Feb 23.
9
Cloning, expression, and characterization of a new beta-agarase from Vibrio sp. strain CN41.
Appl Environ Microbiol. 2011 Oct;77(19):7077-9. doi: 10.1128/AEM.05364-11. Epub 2011 Aug 5.
10
Crystal structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase from Saccharophagus degradans 2-40.
Biochem Biophys Res Commun. 2011 Aug 26;412(2):238-44. doi: 10.1016/j.bbrc.2011.07.073. Epub 2011 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验