Max Planck Institute for Infection Biology, Berlin, Germany.
PLoS One. 2013 Jul 29;8(7):e70116. doi: 10.1371/journal.pone.0070116. Print 2013.
The transcription factors SCL/Tal-1 and AML1/Runx1 control the generation of pluripotent hematopoietic stem cells (pHSC) and, thereby, primitive and definitive hematopoiesis, during embryonic development of the mouse from mesoderm. Thus, Runx1-deficient mice generate primitive, but not definitive hematopoiesis, while Tal-1-deficient mice are completely defective. Primitive as well as definitive hematopoiesis can be developed "in vitro" from embryonic stem cells (ESC). We show that wild type, as well as Tal-1(-/-) and Runx1(-/-) ESCs, induced to differentiation, all expand within 5 days to comparable numbers of Flk1(+) mesodermal cells. While wild type ESCs further differentiate to primitive and definitive erythrocytes, to c-fms(+)Gr1(+)Mac1(+) myeloid cells, and to B220(+)CD19(+) B- and CD4(+)/CD8(+) T-lymphoid cells, Runx1(-/-) ESCs, as expected, only develop primitive erythrocytes, and Tal-1(-/-) ESCs do not generate any hematopoietic cells. Retroviral transduction with Runx1 of Runx1(-/-) ESCs, differentiated for 4 days to mesoderm, rescues definitive erythropoiesis, myelopoiesis and lymphopoiesis, though only with 1-10% of the efficiencies of wild type ESC hematopoiesis. Surprisingly, Tal-1(-/-) ESCs can also be rescued at comparably low efficiencies to primitive and definitive erythropoiesis, and to myelopoiesis and lymphopoiesis by retroviral transduction with Runx1. These results suggest that Tal-1 expression is needed to express Runx1 in mesoderm, and that ectopic expression of Runx1 in mesoderm is sufficient to induce primitive as well as definitive hematopoiesis in the absence of Tal-1. Retroviral transduction of "in vitro" differentiating Tal-1(-/-) and Runx1(-/-) ESCs should be a useful experimental tool to probe selected genes for activities in the generation of hematopoietic progenitors "in vitro", and to assess the potential transforming activities in hematopoiesis of mutant forms of Tal-1 and Runx1 from acute myeloid leukemia and related tumors.
转录因子 SCL/Tal-1 和 AML1/Runx1 控制着多能造血干细胞(pHSC)的产生,并由此控制着胚胎发育过程中中胚层向原始和定向造血的分化。因此,Runx1 缺陷型小鼠仅能产生原始造血,但不能产生定向造血,而 Tal-1 缺陷型小鼠则完全缺失造血。原始和定向造血均可从胚胎干细胞(ESC)“体外”发育而来。我们发现,野生型、Tal-1(-/-) 和 Runx1(-/-) ESC 在诱导分化后,在 5 天内均可扩增至相当数量的 Flk1(+)中胚层细胞。虽然野生型 ESC 可进一步分化为原始和定向红细胞、c-fms(+)Gr1(+)Mac1(+)髓样细胞以及 B220(+)CD19(+)B-和 CD4(+)/CD8(+)T 淋巴细胞,但正如预期的那样,Runx1(-/-) ESC 仅能产生原始红细胞,而 Tal-1(-/-) ESC 则不能产生任何造血细胞。用 Runx1 逆转录病毒转导 4 天分化为中胚层的 Runx1(-/-) ESC,可挽救定向红细胞生成、髓系生成和淋巴系生成,但效率仅为野生型 ESC 造血的 1-10%。令人惊讶的是,用 Runx1 逆转录病毒转导 Tal-1(-/-) ESC 也可在相似的低效率下挽救原始和定向红细胞生成,以及髓系生成和淋巴系生成。这些结果表明,Tal-1 表达需要在中胚层中表达 Runx1,而在 Tal-1 缺失的情况下,异位表达 Runx1 足以诱导原始和定向造血。用逆转录病毒转导“体外”分化的 Tal-1(-/-)和 Runx1(-/-) ESC 应成为一种有用的实验工具,可用于研究造血祖细胞“体外”生成中特定基因的活性,并评估急性髓系白血病和相关肿瘤中 Tal-1 和 Runx1 突变形式在造血中的潜在转化活性。