Department of Chemistry and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel 52900.
Langmuir. 2013 Aug 27;29(34):10964-72. doi: 10.1021/la402391f. Epub 2013 Aug 7.
Electrochemical, surface, and structural studies related to rechargeable Mg batteries were carried out with monolithic thin-film cathodes comprising layered V2O5 and MoO3. The reversible intercalation reactions of these electrodes with Mg ion in nonaqueous Mg salt solutions were explored using a variety of analytical tools. These included slow-scan rate cyclic voltammetry (SSCV), chrono-potentiometry (galvanostatic cycling), Raman and photoelectron spectroscopies, high-resolution microscopy, and XRD. The V2O5 electrodes exhibited reversible Mg-ion intercalation at capacities around 150-180 mAh g(-1) with 100% efficiency. A capacity of 220 mAh g(-1) at >95% efficiency was obtained with MoO3 electrodes. By applying the electrochemical driving force sufficiently slowly it was possible to measure the electrodes at equilibrium conditions and verify by spectroscopy, microscopy, and diffractometry that these electrodes undergo fully reversible structural changes upon Mg-ion insertion/deinsertion cycling.
采用包含层状 V2O5 和 MoO3 的整体式薄膜阴极进行了与可再充电 Mg 电池相关的电化学、表面和结构研究。使用各种分析工具探索了这些电极与非水 Mg 盐溶液中 Mg 离子的可逆嵌入反应。这些工具包括慢扫描速率循环伏安法(SSCV)、计时电位法(恒电流循环)、拉曼和光电子能谱、高分辨率显微镜和 XRD。V2O5 电极在容量约为 150-180 mAh g(-1)、效率为 100%的情况下表现出可逆的 Mg 离子嵌入。MoO3 电极获得了 220 mAh g(-1)的容量,效率>95%。通过足够缓慢地施加电化学驱动力,可以在平衡条件下测量电极,并通过光谱、显微镜和衍射法验证这些电极在 Mg 离子插入/脱插循环过程中经历完全可逆的结构变化。