Suppr超能文献

基于卷积网络的微多普勒声纳和听觉信号的多模态融合行为分类。

Multimodal integration of micro-Doppler sonar and auditory signals for behavior classification with convolutional networks.

机构信息

Department of Physiology and Pharmacology, SUNY Downstate, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.

出版信息

Int J Neural Syst. 2013 Oct;23(5):1350021. doi: 10.1142/S0129065713500214. Epub 2013 Jul 23.

Abstract

The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The system architecture is based on a six-layer convolutional neural network, trained and evaluated using a dataset of 10 subjects performing seven different behaviors. Probabilistic combination of system output through time for each modality separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct behavior classification; probabilistic multimodal integration increases classification performance to 98%. This study supports the efficacy of micro-Doppler sonar systems in characterizing human actions, which can then be efficiently classified using ConvNets. It also demonstrates that the integration of multiple sources of acoustic information can significantly improve the system's performance.

摘要

在一般安全领域(如建筑安全、人群控制、交通分析、老年人独立生活),识别个体行为的能力引起了极大的兴趣。在这里,我们报告了一种新的实时声学系统,用于人类动作和行为识别,该系统集成了多个时间尺度的被动音频和主动微多普勒声纳特征。该系统架构基于一个六层卷积神经网络,使用 10 个主体执行七种不同行为的数据集进行训练和评估。通过分别对每个模态进行系统输出的概率组合,得到 94%(被动音频)和 91%(微多普勒声纳)的正确行为分类;概率多模态集成将分类性能提高到 98%。这项研究支持了微多普勒声纳系统在描述人体动作方面的有效性,然后可以使用 ConvNets 对其进行高效分类。它还表明,集成多个声学信息源可以显著提高系统的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验