Department of Chemical Engineering, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.
Nano Lett. 2013 Sep 11;13(9):4442-8. doi: 10.1021/nl402315z. Epub 2013 Aug 7.
The thermodynamic adsorption profile at a solvated organic-inorganic interface is probed by following the binding and organization of carboxylic acid-terminated alkanethiols of varying chain lengths (C2, C3, and C6) to the surface of gold nanoparticles (NPs) (5.4 ± 0.7, 9.5 ± 0.6, and 19.4 ± 1.1 nm diameter) using isothermal titration calorimetry (ITC). We discuss the effect of alkyl chain length, temperature, and Au NP size on the energetics at an organic-inorganic interface. ITC allows for the quantification of the adsorption constant, enthalpy of adsorption, entropy of adsorption, and the binding stoichiometry in a single experiment. The thermodynamic parameters support a mechanism of stepwise adsorption of thiols to the surface of Au NPs and secondary ordering of the thiols at the organic-inorganic interface. The adsorption enthalpies are chain-length dependent; enthalpy becomes more exothermic as longer chains are confined, compensating for greater decreases in entropy with increasing chain length. We observe an apparent compensation effect: the negative ΔH is compensated by a negative ΔS as the thiols self-assemble on the Au NP surface. A comparison of the thermodynamic parameters indicates thiol-Au NP association is enthalpy-driven because of the large, exothermic enthalpies accompanied by an unfavorable entropic contribution associated with confinement of alkyl chains, reduced trans-gauche interconversion, and the apparent ordering of solvent molecules around the hydrophobic organic thiols (hydrophobic effect). Understanding the thermodynamics of adsorption at NP surfaces will provide critical insight into the role of ligands in directing size and shape during NP synthesis since thiols are a common ligand choice (i.e., Brust method). The ITC technique is applicable to a larger number of structure-directing ligands and solvent combinations and therefore should become an important tool for understanding reaction mechanisms in nanostructure synthesis.
通过使用等温滴定微量热法(ITC),研究了不同链长(C2、C3 和 C6)的羧酸末端烷硫醇在金纳米粒子(NPs)表面的结合和组织情况,从而探测了溶剂化有机-无机界面的热力学吸附曲线。我们讨论了烷基链长度、温度和 Au NP 尺寸对有机-无机界面能量的影响。ITC 允许在单次实验中定量吸附常数、吸附焓、吸附熵和结合化学计量。热力学参数支持了一种逐步吸附硫醇到 Au NPs 表面的机制,以及硫醇在有机-无机界面的二级有序化。吸附焓与链长有关;随着链长的增加,束缚的焓变得更加放热,从而补偿了熵的增加。我们观察到一种明显的补偿效应:随着硫醇在 Au NP 表面自组装,负的 ΔH 通过负的 ΔS 得到补偿。对热力学参数的比较表明,由于与烷基链的限制、减少的 trans-gauche 相互转化以及疏水分子围绕疏水性有机硫醇(疏水效应)的明显有序化相关的大的放热焓伴随着不利的熵贡献,硫醇-Au NP 缔合是焓驱动的。了解 NP 表面吸附的热力学将为了解配体在指导 NP 合成过程中的尺寸和形状方面的作用提供关键的见解,因为硫醇是一种常见的配体选择(即 Brust 方法)。ITC 技术适用于更多的结构导向配体和溶剂组合,因此应该成为理解纳米结构合成中反应机制的重要工具。