Suppr超能文献

通过基于高斯混合的软聚类方法快速准确地分析 X 射线荧光显微镜数据集。

Rapid and accurate analysis of an X-ray fluorescence microscopy data set through gaussian mixture-based soft clustering methods.

机构信息

X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.

出版信息

Microsc Microanal. 2013 Oct;19(5):1281-9. doi: 10.1017/S1431927613012737. Epub 2013 Aug 7.

Abstract

X-ray fluorescence (XRF) microscopy is an important tool for studying trace metals in biology, enabling simultaneous detection of multiple elements of interest and allowing quantification of metals in organelles without the need for subcellular fractionation. Currently, analysis of XRF images is often done using manually defined regions of interest (ROIs). However, since advances in synchrotron instrumentation have enabled the collection of very large data sets encompassing hundreds of cells, manual approaches are becoming increasingly impractical. We describe here the use of soft clustering to identify cell ROIs based on elemental contents, using data collected over a sample of the malaria parasite Plasmodium falciparum as a test case. Soft clustering was able to successfully classify regions in infected erythrocytes as “parasite,” “food vacuole,” “host,” or “background.” In contrast, hard clustering using the k-means algorithm was found to have difficulty in distinguishing cells from background.While initial tests showed convergence on two or three distinct solutions in 60% of the cells studied, subsequent modifications to the clustering routine improved results to yield 100% consistency in image segmentation. Data extracted using soft cluster ROIs were found to be as accurate as data extracted using manually defined ROIs, and analysis time was considerably improved.

摘要

X 射线荧光(XRF)显微镜是研究生物学中痕量金属的重要工具,它能够同时检测多个感兴趣的元素,并允许在无需亚细胞分级分离的情况下定量细胞器中的金属。目前,XRF 图像的分析通常使用手动定义的感兴趣区域(ROI)进行。然而,由于同步加速器仪器的进步使得能够收集涵盖数百个细胞的非常大数据集,因此手动方法变得越来越不切实际。我们在这里描述了使用软聚类根据元素含量识别细胞 ROI 的方法,使用疟原虫 Plasmodium falciparum 样本中的数据作为测试案例。软聚类能够成功地将受感染的红细胞中的区域分类为“寄生虫”、“食物泡”、“宿主”或“背景”。相比之下,使用 k-均值算法的硬聚类在区分细胞和背景方面存在困难。虽然初步测试表明在研究的 60%的细胞中,聚类方法能够收敛到两个或三个不同的解决方案,但对聚类例程的后续修改提高了结果的一致性,达到了 100%的图像分割一致性。使用软聚类 ROI 提取的数据与使用手动定义 ROI 提取的数据一样准确,并且分析时间大大缩短。

相似文献

7
Soft X-ray microscopes and their biological applications.软X射线显微镜及其生物学应用。
Q Rev Biophys. 1995 Feb;28(1):33-130. doi: 10.1017/s0033583500003139.

引用本文的文献

本文引用的文献

2
Advantages of clustering in the phase classification of hyperspectral materials images.高光谱材料图像分相中的聚类优势。
Microsc Microanal. 2010 Dec;16(6):810-20. doi: 10.1017/S143192761009402X. Epub 2010 Oct 22.
4
Calcium gradients and the Golgi.钙梯度与高尔基体
Cell Calcium. 2006 Nov-Dec;40(5-6):505-12. doi: 10.1016/j.ceca.2006.08.012. Epub 2006 Oct 4.
6
Cellular iron metabolism: mitochondria in the spotlight.细胞铁代谢:聚焦线粒体
Blood. 2005 Mar 1;105(5):1844-5. doi: 10.1182/blood-2004-12-4747.
8
Cluster analysis of soft X-ray spectromicroscopy data.软X射线光谱显微镜数据的聚类分析
Ultramicroscopy. 2004 Jul;100(1-2):35-57. doi: 10.1016/j.ultramic.2004.01.008.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验