Div. of Renal Diseases and Hypertension, The Univ. of Texas Medical School at Houston, 6431 Fannin, MSB 5.124, Houston, TX 77030.
Am J Physiol Renal Physiol. 2013 Oct 1;305(7):F1006-13. doi: 10.1152/ajprenal.00407.2013. Epub 2013 Aug 7.
Aldosterone increases tubular Na(+) absorption largely by increasing α-epithelial Na(+) channel (αENaC) transcription in collecting duct principal cells. How aldosterone reprograms basal αENaC transcription to high-level activity in the collecting duct is incompletely understood. Promoter methylation, a covalent but reversible epigenetic process, has been implicated in the control of gene expression in health and disease. We investigated the role of promoter methylation/demethylation in the epigenetic control of basal and aldosterone-stimulated αENaC transcription in mIMCD3 collecting duct cells. Bisulfite treatment and sequencing analysis after treatment of the cells with the DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-Aza-CdR) identified clusters of methylated cytosines in a CpG island near the transcription start site of the αENaC promoter. 5-Aza-CdR treatment or small interfering RNA-mediated knockdown of DNMT3b or methyl-CpG-binding domain protein (MBD)-4 derepressed basal αENaC transcription, indicating that promoter methylation suppresses basal αENaC transcription. Aldosterone triggered a time-dependent decrease in 5mC and DNMT3b and a concurrent enrichment in 5-hydroxymethylcytosine (5hmC) and ten-eleven translocation (Tet)2 at the αENaC promoter, consistent with active demethylation. 5-Aza-CdR mimicked aldosterone by enhancing Sp1 binding to the αENaC promoter. We conclude that DNMT3b- and MBD4-dependent methylation of the αENaC promoter limits basal αENaC transcription, in part by limiting Sp1 binding and trans-activation. Aldosterone stimulates the dispersal of DNMT3b and recruitment of Tet2 to demethylate the αENaC promoter to induce αENaC transcription. These results disclose a novel epigenetic mechanism for the control of basal and aldosterone-induced αENaC transcription that adds to previously described epigenetic controls exerted by histone modifications.
醛固酮通过增加集合管主细胞中α-上皮钠通道 (αENaC) 的转录,从而大量增加管状 Na(+) 的吸收。醛固酮如何将基础αENaC 转录重新编程为集合管中的高水平活性还不完全清楚。启动子甲基化是一种共价但可逆的表观遗传过程,与健康和疾病中的基因表达控制有关。我们研究了启动子甲基化/去甲基化在 mIMCD3 集合管细胞中基础和醛固酮刺激的αENaC 转录的表观遗传控制中的作用。用 DNA 甲基转移酶 (DNMT) 抑制剂 5-氮杂-2'-脱氧胞苷 (5-Aza-CdR) 处理细胞后进行亚硫酸氢盐处理和测序分析,鉴定出αENaC 启动子转录起始位点附近 CpG 岛中存在簇状甲基化胞嘧啶。5-Aza-CdR 处理或小干扰 RNA 介导的 DNMT3b 或甲基-CpG 结合域蛋白 (MBD)-4 敲低可使基础αENaC 转录去抑制,表明启动子甲基化抑制基础αENaC 转录。醛固酮触发αENaC 启动子处 5mC 和 DNMT3b 的时间依赖性减少,同时 5-羟甲基胞嘧啶 (5hmC) 和十-十一易位酶 2 (Tet)2 富集,这与活性去甲基化一致。5-Aza-CdR 通过增强 Sp1 结合到αENaC 启动子来模拟醛固酮的作用。我们得出结论,DNMT3b 和 MBD4 依赖性的αENaC 启动子甲基化限制基础αENaC 转录,部分通过限制 Sp1 结合和反式激活。醛固酮刺激 DNMT3b 的分散和 Tet2 的募集,以去甲基化αENaC 启动子,从而诱导αENaC 转录。这些结果揭示了控制基础和醛固酮诱导的αENaC 转录的新表观遗传机制,这增加了先前描述的组蛋白修饰施加的表观遗传控制。