Suppr超能文献

利用带有排放模型(MOVES)的交通仿真模型(VISSIM)预测高速公路上车辆的排放。

Using a traffic simulation model (VISSIM) with an emissions model (MOVES) to predict emissions from vehicles on a limited-access highway.

机构信息

Department of Civil, Environmental and Construction Engineering (CECE), University of Central Florida (UCF), 4000 Central Florida Blvd., Eng. Building II, Orlando, FL 32816-2450, USA.

出版信息

J Air Waste Manag Assoc. 2013 Jul;63(7):819-31. doi: 10.1080/10962247.2013.795918.

Abstract

UNLABELLED

The Intergovernmental Panel on Climate Change (IPCC) estimates that baseline global GHG emissions may increase 25-90% from 2000 to 2030, with carbon dioxide (CO2 emissions growing 40-110% over the same period. On-road vehicles are a major source of CO2 emissions in all the developed countries, and in many of the developing countries in the world. Similarly, several criteria air pollutants are associated with transportation, for example, carbon monoxide (CO), nitrogen oxides (NO(x)), and particulate matter (PM). Therefore, the need to accurately quantify transportation-related emissions from vehicles is essential. The new US. Environmental Protection Agency (EPA) mobile source emissions model, MOVES2010a (MOVES), can estimate vehicle emissions on a second-by-second basis, creating the opportunity to combine a microscopic traffic simulation model (such as VISSIM) with MOVES to obtain accurate results. This paper presents an examination of four different approaches to capture the environmental impacts of vehicular operations on a 10-mile stretch of Interstate 4 (I-4), an urban limited-access highway in Orlando, FL. First (at the most basic level), emissions were estimated for the entire 10-mile section "by hand" using one average traffic volume and average speed. Then three advanced levels of detail were studied using VISSIM/MOVES to analyze smaller links: average speeds and volumes (AVG), second-by-second link drive schedules (LDS), and second-by-second operating mode distributions (OPMODE). This paper analyzes how the various approaches affect predicted emissions of CO, NO(x), PM2.5, PM10, and CO2. The results demonstrate that obtaining precise and comprehensive operating mode distributions on a second-by-second basis provides more accurate emission estimates. Specifically, emission rates are highly sensitive to stop-and-go traffic and the associated driving cycles of acceleration, deceleration, and idling. Using the AVG or LDS approach may overestimate or underestimate emissions, respectively, compared to an operating mode distribution approach.

IMPLICATIONS

Transportation agencies and researchers in the past have estimated emissions using one average speed and volume on a long stretch of roadway. With MOVES, there is an opportunity for higher precision and accuracy. Integrating a microscopic traffic simulation model (such as VISSIM) with MOVES allows one to obtain precise and accurate emissions estimates. The proposed emission rate estimation process also can be extended to gridded emissions for ozone modeling, or to localized air quality dispersion modeling, where temporal and spatial resolution of emissions is essential to predict the concentration of pollutants near roadways.

摘要

未加标签

政府间气候变化专门委员会(IPCC)估计,全球温室气体基线排放量可能会在 2000 年至 2030 年期间增加 25%至 90%,同期二氧化碳(CO2)排放量增长 40%至 110%。在所有发达国家,道路车辆是 CO2 排放的主要来源,在世界上许多发展中国家也是如此。同样,一些空气质量标准污染物与交通有关,例如一氧化碳(CO)、氮氧化物(NOx)和颗粒物(PM)。因此,需要准确量化车辆的运输相关排放量。美国新的环境保护署(EPA)移动源排放模型 MOVES2010a(MOVES)可以在每秒的基础上估算车辆排放,从而有机会将微观交通模拟模型(如 VISSIM)与 MOVES 结合起来以获得准确的结果。本文探讨了在佛罗里达州奥兰多市的 4 号州际公路(I-4)的 10 英里路段上捕捉车辆运行对环境的影响的四种不同方法。首先(在最基本的层面上),使用一个平均交通量和平均速度“手动”估算整个 10 英里路段的排放量。然后,使用 VISSIM/MOVES 研究了三个更高级别的详细信息,以分析较小的路段:平均速度和流量(AVG)、逐秒链路驱动时间表(LDS)和逐秒操作模式分布(OPMODE)。本文分析了各种方法如何影响 CO、NOx、PM2.5、PM10 和 CO2 的预测排放量。结果表明,在每秒的基础上获得精确和全面的操作模式分布可以提供更准确的排放估算。具体而言,排放率对停停走走的交通以及相关的加速、减速和怠速行驶循环非常敏感。与操作模式分布方法相比,使用 AVG 或 LDS 方法可能会高估或低估排放量。

意义

过去,交通机构和研究人员使用道路上的一个平均速度和流量来估算排放量。有了 MOVES,就有机会提高精度和准确性。将微观交通模拟模型(如 VISSIM)与 MOVES 集成,可以获得精确和准确的排放估算。所提出的排放率估算过程也可以扩展到臭氧建模的网格化排放,或本地化空气质量扩散建模,其中排放的时间和空间分辨率对于预测道路附近污染物的浓度至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验