Suppr超能文献

硬球流体和亚稳相玻璃的平衡理论直至阻塞。二。结构及对跳跃动力学的应用。

Equilibrium theory of the hard sphere fluid and glasses in the metastable regime up to jamming. II. Structure and application to hopping dynamics.

机构信息

Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA.

出版信息

J Chem Phys. 2013 Aug 7;139(5):054502. doi: 10.1063/1.4816276.

Abstract

Building on the equation-of-state theory of Paper I, we construct a new thermodynamically consistent integral equation theory for the equilibrium pair structure of 3-dimensional monodisperse hard spheres applicable up to the jamming transition. The approach is built on a two Yukawa generalized mean spherical approximation closure for the direct correlation function (DCF) beyond contact that reproduces the exact contact value of the pair correlation function and isothermal compressibility. The detailed construction of the DCF is guided by the desire to capture its distinctive features as jamming is approached. Comparison of the theory with jamming limit simulations reveals good agreement for many, but not all, of the key features of the pair correlation function. The theory is more accurate in Fourier space where predictions for the structure factor and DCF are accurate over a wide range of wavevectors from significantly below the first cage peak to very high wavevectors. New features of the equilibrium pair structure are predicted for packing fractions below jamming but well above crystallization. For example, the oscillatory DCF decays very slowly at large wavevectors for high packing fractions as a consequence of the unusual structure of the radial distribution function at small separations. The structural theory is used as input to the nonlinear Langevin equation theory of activated dynamics, and calculations of the alpha relaxation time based on single particle hopping are compared to recent colloid experiments and simulations at very high volume fractions.

摘要

基于论文 I 的状态方程理论,我们构建了一种新的适用于 3 维单分散硬球平衡对结构的热力学一致积分方程理论,直至达到阻塞转变。该方法基于直接关联函数(DCF)的两个双 Yukawa 广义均方球逼近,超出接触范围,再现了对关联函数和等温压缩率的精确接触值。DCF 的详细构造受接近阻塞时捕捉其独特特征的愿望的指导。与阻塞极限模拟的比较表明,该理论在许多但不是所有对关联函数的关键特征方面具有良好的一致性。该理论在傅立叶空间更准确,结构因子和 DCF 的预测在从第一个笼峰显著低于到非常高的波数的广泛波数范围内都很准确。在高于结晶但低于阻塞的堆积分数下,预测了平衡对结构的新特征。例如,由于在小分离处径向分布函数的异常结构,对于高堆积分数,DCF 在大波数处的振荡衰减非常缓慢。结构理论被用作激活动力学的非线性朗之万方程理论的输入,基于单粒子跃迁的α弛豫时间的计算与最近的胶体实验和非常高的体积分数的模拟进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验