U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993, USA.
Med Phys. 2013 Aug;40(8):081917. doi: 10.1118/1.4815964.
To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.
By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reed National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.
The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 mGy, respectively. The GE Discovery delivers about the same amount of dose (43.7 mGy) when run under similar operating and image-reconstruction conditions, i.e., without tube current modulation and ASIR. The image-metrics analysis likewise showed that the MTF, NPS, and CNR associated with the reconstructed images are mutually comparable when the three scanners are run with similar settings, and differences can be attributed to different edge-enhancement properties of the applied reconstruction filters. Moreover, when the GE scanner was operated with the facility's scanner settings for routine head exams, which apply 50% ASIR and use only approximately half of the 100%-FBP dose, the CNR of the images showed no significant change. Even though the CNR alone is not sufficient to characterize the image quality and justify any dose reduction claims, it can be useful as a constancy test metric.
This work presents a straightforward method to connect direct measurements of CT dose with objective image metrics such as high-contrast resolution, noise, and CNR. It demonstrates that OSLD measurements in an anthropomorphic head phantom allow a realistic and locally precise estimation of magnitude and spatial distribution of dose in tissue delivered during a typical CT head scan. Additional objective analysis of the images of the ACR accreditation phantom can be used to relate the measured doses to high contrast resolution, noise, and CNR.
在三种广泛使用的计算机断层扫描(CT)扫描仪中,测量具有临床代表性的扫描条件下的人体头部模型中的吸收剂量及其分布,并将这些剂量值与美国放射学院 CT 认证体模中的高对比度分辨率、噪声和对比噪声比(CNR)等指标相关联。
通过在专门为 CT 剂量学开发的人体头部模型(佛罗里达大学,盖恩斯维尔)中插入光激励发光剂量计(OSLD),我们在两个不同的临床地点(沃尔特里德国家军事医疗中心,美国国立卫生研究院)使用三种常用扫描仪(GE Discovery CT750 HD、西门子 Definition、飞利浦 Brilliance 64)进行测量。扫描仪设置为使用与临床用于典型头部扫描相同的数据采集和图像重建协议,分别考虑每个设施对每个扫描仪的实践。我们还使用相应的协议分析了 ACR CT 认证体模的图像。虽然西门子 Definition 和飞利浦 Brilliance 协议仅使用常规的、滤波反投影(FBP)图像重建方法,但 GE Discovery 还采用了其特定版本的自适应统计迭代重建(ASIR)算法,可以与 FBP 算法以所需的比例混合。我们进行了客观的图像度量分析,评估了使用 FBP 重建的图像的调制传递函数(MTF)、噪声功率谱(NPS)和 CNR。对于使用 ASIR 重建的图像,我们仅分析了 CNR,因为对于迭代重建算法,MTF 和 NPS 的结果预计取决于物体。
OSLD 测量结果表明,西门子 Definition 和飞利浦 Brilliance 扫描仪(位于两个不同的临床设施)分别产生组织内 42.6 和 43.1 mGy 的平均吸收剂量。当在类似的操作和图像重建条件下运行时,GE Discovery 会输送相同量的剂量(43.7 mGy),即不使用管电流调制和 ASIR。当三个扫描仪以相似的设置运行时,图像度量分析同样表明,与重建图像相关联的 MTF、NPS 和 CNR 是相互可比的,并且差异可以归因于应用的重建滤波器的不同边缘增强特性。此外,当 GE 扫描仪以设施的常规头部检查扫描设置运行时,应用 50%的 ASIR 并仅使用 100%-FBP 剂量的一半,图像的 CNR 没有显示出显著变化。尽管 CNR 本身不足以描述图像质量并证明任何剂量减少的主张是合理的,但它可以作为恒定性测试指标有用。
这项工作提出了一种将 CT 剂量的直接测量与高对比度分辨率、噪声和 CNR 等客观图像度量联系起来的简单方法。它表明,在人体头部模型中的 OSLD 测量允许对典型 CT 头部扫描过程中组织内的剂量大小和空间分布进行现实和局部精确的估计。对 ACR 认证体模图像的附加客观分析可用于将测量的剂量与高对比度分辨率、噪声和 CNR 相关联。