Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030.
Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030; Department of Natural Sciences, L. N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan.
J Biol Chem. 2013 Sep 20;288(38):27019-27030. doi: 10.1074/jbc.M113.498055. Epub 2013 Aug 8.
Nutrients are essential for living organisms because they fuel biological processes in cells. Cells monitor nutrient abundance and coordinate a ratio of anabolic and catabolic reactions. Mechanistic target of rapamycin (mTOR) signaling is the essential nutrient-sensing pathway that controls anabolic processes in cells. The central component of this pathway is mTOR, a highly conserved and essential protein kinase that exists in two distinct functional complexes. The nutrient-sensitive mTOR complex 1 (mTORC1) controls cell growth and cell size by phosphorylation of the regulators of protein synthesis S6K1 and 4EBP1, whereas its second complex, mTORC2, regulates cell proliferation by functioning as the regulatory kinase of Akt and other members of the AGC kinase family. The regulation of mTORC2 remains poorly characterized. Our study shows that the cellular ATP balance controls a basal kinase activity of mTORC2 that maintains the integrity of mTORC2 and phosphorylation of Akt on the turn motif Thr-450 site. We found that mTOR stabilizes SIN1 by phosphorylation of its hydrophobic and conserved Ser-260 site to maintain the integrity of mTORC2. The optimal kinase activity of mTORC2 requires a concentration of ATP above 1.2 mM and makes this kinase complex highly sensitive to ATP depletion. We found that not amino acid but glucose deprivation of cells or acute ATP depletion prevented the mTOR-dependent phosphorylation of SIN1 on Ser-260 and Akt on Thr-450. In a low glucose medium, the cells carrying a substitution of SIN1 with its phosphomimetic mutant show an increased rate of cell proliferation related to a higher abundance of mTORC2 and phosphorylation of Akt. Thus, the homeostatic ATP sensor mTOR controls the integrity of mTORC2 and phosphorylation of Akt on the turn motif site.
营养素对于生物体是必不可少的,因为它们为细胞中的生物过程提供燃料。细胞监测营养素的丰度,并协调合成代谢和分解代谢反应的比例。雷帕霉素靶蛋白(mTOR)信号通路是一种必需的营养感应途径,控制着细胞中的合成代谢过程。该途径的核心组件是 mTOR,一种高度保守且必需的蛋白激酶,存在于两个不同的功能复合物中。营养敏感的 mTOR 复合物 1(mTORC1)通过磷酸化蛋白质合成的调节因子 S6K1 和 4EBP1 来控制细胞生长和细胞大小,而其第二个复合物 mTORC2 通过作为 Akt 和 AGC 激酶家族的其他成员的调节激酶来调节细胞增殖。mTORC2 的调节仍知之甚少。我们的研究表明,细胞内的 ATP 平衡控制着 mTORC2 的基础激酶活性,该活性维持着 mTORC2 的完整性和 Akt 在转弯模体 Thr-450 位点的磷酸化。我们发现 mTOR 通过磷酸化其疏水且保守的 Ser-260 位点来稳定 SIN1,以维持 mTORC2 的完整性。mTORC2 的最佳激酶活性需要 ATP 浓度高于 1.2mM,并使该激酶复合物对 ATP 耗竭非常敏感。我们发现不是氨基酸而是细胞的葡萄糖剥夺或急性 ATP 耗竭阻止了 mTOR 依赖性 SIN1 在 Ser-260 和 Akt 在 Thr-450 的磷酸化。在低糖培养基中,携带 SIN1 磷酸模拟突变体的细胞表现出与更高丰度的 mTORC2 和 Akt 磷酸化相关的更高细胞增殖率。因此,稳态 ATP 传感器 mTOR 控制着 mTORC2 的完整性和 Akt 在转弯模体位点的磷酸化。