Division of Infectious diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India.
Vaccine. 2013 Sep 23;31(41):4682-8. doi: 10.1016/j.vaccine.2013.06.110. Epub 2013 Aug 5.
We investigated how the processing of a given antigen by antigen presenting cells (APC) is dictated by the conformation of the antigen and how this governs the immunodominance hierarchy. To address the question, a known immunodominant sequence of bacteriophage lambda repressor N-terminal sequence 12-26 [λR(12-26)] was engineered at the N and C termini of a heterologous leishmanial protein, Kinetoplastid membrane protein-11 (KMP-11); the resulting proteins were defined as N-KMP-11 and C-KMP-11 respectively. The presence of λR(12-26) in N-KMP-11 and C-KMP-11 was established by western blot analysis with antibody to λR(12-26) peptide. N-KMP-11 but not C-KMP-11 could stimulate the anti λR(12-26) T-cell clonal population very efficiently in the presence of APCs. Priming of BALB/c mice with N-KMP-11 or C-KMP-11 generated similar levels of anti-KMP-11 IgG, but anti-λR(12-26) specific IgG was observed only upon priming with N-KMP-11. Interestingly, uptake of both N-KMP-11 and C-KMP-11 by APCs was similar but catabolism of N-KMP-11 but not C-KMP-11 was biphasic and fast at the initial time point. Kratky plots of small angle X-ray scattering showed that while N-KMP-11 adopts flexible Gaussian type of topology, C-KMP-11 prefers Globular nature. To show that KMP-11 is not unique as a carrier protein, an epitope (SPITBTNLBTMBK) of Plasmodium yoelii (PY) apical membrane protein 1[AMA-1 (136-148)], is placed at the C and N terminals of a dominant T-cell epitope of ovalbumin protein OVA(323-339) and the resulting peptides are defined as PY-OVA and OVA-PY respectively. Interestingly, only OVA-PY could stimulate anti-OVA T-cells and produce IgG response upon priming of BALB/c mice with it. Thus for rational design of peptide vaccine it is important to place the dominant epitope appropriately in the context of the carrier protein.
我们研究了抗原呈递细胞(APC)对特定抗原的处理方式如何受抗原构象的影响,以及这种处理方式如何决定免疫优势层次。为了解决这个问题,我们对噬菌体 λ 阻遏物 N 端序列 12-26 的一个已知免疫显性序列进行了工程改造,使其位于异源利什曼原虫蛋白 Kinetoplastid 膜蛋白-11(KMP-11)的 N 和 C 末端;由此产生的蛋白分别被定义为 N-KMP-11 和 C-KMP-11。通过用针对 λR(12-26) 肽的抗体进行 Western blot 分析,证实了 N-KMP-11 和 C-KMP-11 中存在 λR(12-26)。在 APC 的存在下,N-KMP-11 而非 C-KMP-11 能够非常有效地刺激抗 λR(12-26) T 细胞克隆群体。用 N-KMP-11 或 C-KMP-11 对 BALB/c 小鼠进行初免,均可产生相似水平的抗 KMP-11 IgG,但仅在用 N-KMP-11 初免时才观察到抗 λR(12-26)特异性 IgG。有趣的是,APC 摄取 N-KMP-11 和 C-KMP-11 的情况相似,但 N-KMP-11 的代谢而非 C-KMP-11 的代谢在初始时间点呈两相且快速。小角度 X 射线散射的 Kratky 图表明,虽然 N-KMP-11 采用灵活的高斯型拓扑结构,但 C-KMP-11 更喜欢球状结构。为了表明 KMP-11 不是唯一的载体蛋白,将疟原虫(PY)顶膜蛋白 1[AMA-1(136-148)]的一个表位(SPITBTNLBTMBK)置于卵清蛋白蛋白 OVA(323-339)的一个显性 T 细胞表位的 C 和 N 末端,由此产生的肽分别被定义为 PY-OVA 和 OVA-PY。有趣的是,只有 OVA-PY 能够刺激抗 OVA T 细胞,并在 BALB/c 小鼠用其进行初免时产生 IgG 反应。因此,为了合理设计肽疫苗,将显性表位适当地置于载体蛋白的背景中非常重要。