Suppr超能文献

利用背根神经节的记录进行实时行走控制。

Real-time control of walking using recordings from dorsal root ganglia.

机构信息

Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.

出版信息

J Neural Eng. 2013 Oct;10(5):056008. doi: 10.1088/1741-2560/10/5/056008. Epub 2013 Aug 8.

Abstract

OBJECTIVE

The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components.

APPROACH

In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the DRG. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modelled from recorded neural firing rates. These models were then used for closed-loop feedback.

MAIN RESULTS

Overall, firing-rate-based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48 ± 13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt.

SIGNIFICANCE

Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development.

摘要

目的

本研究旨在实时解码背根神经节(DRG)的感觉信息,并使用该信息通过基于状态的控制算法来适应单侧步幅控制,该算法由前馈和反馈组件组成。

方法

在 5 只麻醉猫中,通过植入的微丝阵列对脊髓进行模式化电刺激,从而在步道或跑步机上产生后肢步幅,同时从 DRG 记录神经元活动。从记录的神经放电率中模拟了不同的参数,包括髋关节和肢体末端之间的矢量的距离和倾斜度、集成陀螺仪和地面反作用力。然后,这些模型用于闭环反馈。

主要结果

总体而言,基于速率的运动传感器(肢体末端、集成陀螺仪)预测的准确性最高,平均方差解释率>60%。力预测的准确性最低(48±13%),但在闭环反馈控制下,用于步幅的规则激活的百分比最大(96.3%)。除倾斜度外,所有传感器模式的预测均随时间推移而降低。

意义

运动肢体的感觉反馈将是任何旨在恢复脊髓损伤后人类行走能力的神经假体设备的理想组成部分。本研究提供了一个原理证明,即来自 DRG 的实时反馈是可行的,并可以在进一步开发的完全可植入神经假体设备中形成一部分。

相似文献

1
Real-time control of walking using recordings from dorsal root ganglia.利用背根神经节的记录进行实时行走控制。
J Neural Eng. 2013 Oct;10(5):056008. doi: 10.1088/1741-2560/10/5/056008. Epub 2013 Aug 8.
6
Feed forward and feedback control for over-ground locomotion in anaesthetized cats.麻醉猫地面行走的前馈和反馈控制。
J Neural Eng. 2012 Apr;9(2):026003. doi: 10.1088/1741-2560/9/2/026003. Epub 2012 Feb 13.
10
State-space decoding of primary afferent neuron firing rates.状态空间解码初级传入神经元放电率。
J Neural Eng. 2011 Feb;8(1):016002. doi: 10.1088/1741-2560/8/1/016002. Epub 2011 Jan 19.

引用本文的文献

8

本文引用的文献

3
Feed forward and feedback control for over-ground locomotion in anaesthetized cats.麻醉猫地面行走的前馈和反馈控制。
J Neural Eng. 2012 Apr;9(2):026003. doi: 10.1088/1741-2560/9/2/026003. Epub 2012 Feb 13.
6
Estimating bladder pressure from sacral dorsal root ganglia recordings.从骶背根神经节记录估计膀胱压力。
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4239-42. doi: 10.1109/IEMBS.2011.6091052.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验