Suppr超能文献

广义灵敏度散点图。

The generalized sensitivity scatterplot.

机构信息

Department of Computer Science, University of California at Davis, One Shields Avenue, 2063 Kemper Hall, Davis, CA 95616, USA.

出版信息

IEEE Trans Vis Comput Graph. 2013 Oct;19(10):1768-81. doi: 10.1109/TVCG.2013.20.

Abstract

Scatterplots remain a powerful tool to visualize multidimensional data. However, accurately understanding the shape of multidimensional points from 2D projections remains challenging due to overlap. Consequently, there are a lot of variations on the scatterplot as a visual metaphor for this limitation. An important aspect often overlooked in scatterplots is the issue of sensitivity or local trend, which may help in identifying the type of relationship between two variables. However, it is not well known how or what factors influence the perception of trends from 2D scatterplots. To shed light on this aspect, we conducted an experiment where we asked people to directly draw the perceived trends on a 2D scatterplot. We found that augmenting scatterplots with local sensitivity helps to fill the gaps in visual perception while retaining the simplicity and readability of a 2D scatterplot. We call this augmentation the generalized sensitivity scatterplot (GSS). In a GSS, sensitivity coefficients are visually depicted as flow lines, which give a sense of continuity and orientation of the data that provide cues about the way data points are scattered in a higher dimensional space. We introduce a series of glyphs and operations that facilitate the analysis of multidimensional data sets using GSS, and validate with a number of well-known data sets for both regression and classification tasks.

摘要

散点图仍然是可视化多维数据的强大工具。然而,由于重叠,准确理解二维投影中多维点的形状仍然具有挑战性。因此,散点图作为这种局限性的视觉隐喻有很多变体。在散点图中,一个经常被忽视的重要方面是敏感性或局部趋势问题,它可能有助于识别两个变量之间的关系类型。然而,人们并不清楚如何或哪些因素会影响从二维散点图中感知趋势。为了阐明这一方面,我们进行了一项实验,要求人们直接在二维散点图上绘制感知到的趋势。我们发现,通过在散点图上添加局部敏感性来增强散点图有助于填补视觉感知的空白,同时保持二维散点图的简单性和可读性。我们将这种增强称为广义敏感性散点图 (GSS)。在 GSS 中,敏感性系数以流线的形式直观地表示,这些流线提供了数据的连续性和方向感的线索,这些线索可以说明数据点在更高维空间中的分布方式。我们引入了一系列符号和操作,使用 GSS 来方便地分析多维数据集,并使用多个著名的数据集对回归和分类任务进行了验证。

相似文献

1
The generalized sensitivity scatterplot.广义灵敏度散点图。
IEEE Trans Vis Comput Graph. 2013 Oct;19(10):1768-81. doi: 10.1109/TVCG.2013.20.
2
Skeleton-Based Scagnostics.基于骨架的 Scagnostics。
IEEE Trans Vis Comput Graph. 2018 Jan;24(1):542-552. doi: 10.1109/TVCG.2017.2744339. Epub 2017 Aug 29.
5
Cluster-Based Visual Abstraction for Multivariate Scatterplots.基于聚类的多元散点图视觉抽象
IEEE Trans Vis Comput Graph. 2018 Sep;24(9):2531-2545. doi: 10.1109/TVCG.2017.2754480. Epub 2017 Sep 20.
7
Scattering points in parallel coordinates.平行坐标中的散点。
IEEE Trans Vis Comput Graph. 2009 Nov-Dec;15(6):1001-8. doi: 10.1109/TVCG.2009.179.
8
The Connected Scatterplot for Presenting Paired Time Series.用于呈现配对时间序列的关联散点图。
IEEE Trans Vis Comput Graph. 2016 Sep;22(9):2174-86. doi: 10.1109/TVCG.2015.2502587. Epub 2015 Nov 20.
9
Automatic Scatterplot Design Optimization for Clustering Identification.用于聚类识别的自动散点图设计优化
IEEE Trans Vis Comput Graph. 2023 Oct;29(10):4312-4327. doi: 10.1109/TVCG.2022.3189883. Epub 2023 Sep 1.

引用本文的文献

1
Temporal scatterplots.时间散点图。
Comput Vis Media (Beijing). 2020;6(4):385-400. doi: 10.1007/s41095-020-0197-1. Epub 2020 Nov 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验