Islamic Azad University, Hamedan, Young researchers club, Iran.
Comput Biol Med. 2013 Sep;43(9):1142-53. doi: 10.1016/j.compbiomed.2013.05.019. Epub 2013 Jun 1.
In this paper, the semi-numerical techniques known as the optimal homotopy analysis method (HAM) and Differential Transform Method (DTM) are applied to study the magneto-hemodynamic laminar viscous flow of a conducting physiological fluid in a semi-porous channel under a transverse magnetic field. The two-dimensional momentum conservation partial differential equations are reduced to ordinary form incorporating Lorentizian magnetohydrodynamic body force terms. These ordinary differential equations are solved by the homotopy analysis method, the differential transform method and also a numerical method (fourth-order Runge-Kutta quadrature with a shooting method), under physically realistic boundary conditions. The homotopy analysis method contains the auxiliary parameter ℏ, which provides us with a simple way to adjust and control the convergence region of solution series. The differential transform method (DTM) does not require an auxiliary parameter and is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. The influence of Hartmann number (Ha) and transpiration Reynolds number (mass transfer parameter, Re) on the velocity profiles in the channel are studied in detail. Interesting fluid dynamic characteristics are revealed and addressed. The HAM and DTM solutions are shown to both correlate well with numerical quadrature solutions, testifying to the accuracy of both HAM and DTM in nonlinear magneto-hemodynamics problems. Both these semi-numerical techniques hold excellent potential in modeling nonlinear viscous flows in biological systems.
本文应用了半数值技术,即最优同伦分析方法(HAM)和微分变换方法(DTM),研究了横向磁场下半渗透通道中导电生理流体的磁 - 血液动力学层流粘性流动。将二维动量守恒偏微分方程简化为包含洛伦兹磁流体体力项的常微分方程。这些常微分方程通过同伦分析方法、微分变换方法和数值方法(四阶龙格库塔积分与打靶法)求解,采用物理现实的边界条件。同伦分析方法包含辅助参数 ℏ,它为我们提供了一种简单的方法来调整和控制解系列的收敛区域。微分变换方法(DTM)不要求辅助参数,并用于计算系统非线性微分方程的解的逼近,这些方程控制着问题。详细研究了哈特曼数(Ha)和蒸腾雷诺数(质量转移参数,Re)对通道中速度分布的影响。揭示并解决了有趣的流体动力学特性。HAM 和 DTM 解都与数值积分解很好地相关,证明了 HAM 和 DTM 在非线性磁 - 血液动力学问题中的准确性。这两种半数值技术在生物系统中的非线性粘性流建模中都具有很好的潜力。