Department of Chemistry (CMIC), Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy.
Phys Rev Lett. 2013 Jul 26;111(4):048101. doi: 10.1103/PhysRevLett.111.048101. Epub 2013 Jul 25.
We describe and test a new approach to particle velocimetry, based on imaging and cross correlating the scattering speckle pattern generated on a near-field plane by flowing tracers with a size far below the diffraction limit, which allows reconstructing the velocity pattern in microfluidic channels without perturbing the flow. As a matter of fact, adding tracers is not even strictly required, provided that the sample displays sufficiently refractive-index fluctuations. For instance, phase separation in liquid mixtures in the presence of shear is suitable to be directly investigated by this "ghost particle velocimetry" technique, which just requires a microscope with standard lamp illumination equipped with a low-cost digital camera. As a further bonus, the peculiar spatial coherence properties of the illuminating source, which displays a finite longitudinal coherence length, allows for a 3D reconstruction of the profile with a resolution of few tenths of microns and makes the technique suitable to investigate turbid samples with negligible multiple scattering effects.
我们描述并测试了一种新的粒子测速方法,该方法基于对近场平面上流动示踪粒子散射散斑图案的成像和互相关,这些示踪粒子的尺寸远小于衍射极限,从而可以在不干扰流场的情况下重建微流道中的速度图案。实际上,只要样品显示出足够的折射率波动,添加示踪粒子甚至不是严格必需的。例如,在存在剪切的情况下,液体混合物的相分离适合直接用这种“幽灵粒子测速”技术进行研究,该技术只需要配备标准灯照明的显微镜和低成本的数码相机即可。作为进一步的好处,光源具有有限的纵向相干长度,其独特的空间相干特性允许以几十分之一微米的分辨率对轮廓进行 3D 重建,并使该技术适合于研究具有可忽略的多重散射效应的混浊样品。