Suppr超能文献

流动细菌悬液中的间歇性湍流。

Intermittent turbulence in flowing bacterial suspensions.

作者信息

Secchi Eleonora, Rusconi Roberto, Buzzaccaro Stefano, Salek M Mehdi, Smriga Steven, Piazza Roberto, Stocker Roman

机构信息

Department of Chemistry (CMIC), Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA.

Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA Department of Civil, Environmental and Geomatic Engineering, Institute for Environmental Engineering, ETH Zurich, 8092 Zurich, Switzerland.

出版信息

J R Soc Interface. 2016 Jun;13(119). doi: 10.1098/rsif.2016.0175.

Abstract

Dense suspensions of motile bacteria, possibly including the human gut microbiome, exhibit collective dynamics akin to those observed in classic, high Reynolds number turbulence with important implications for chemical and biological transport, yet this analogy has remained primarily qualitative. Here, we present experiments in which a dense suspension of Bacillus subtilis bacteria was flowed through microchannels and the velocity statistics of the flowing suspension were quantified using a recently developed velocimetry technique coupled with vortex identification methods. Observations revealed a robust intermittency phenomenon, whereby the average velocity profile of the suspension fluctuated between a plug-like flow and a parabolic flow profile. This intermittency is a hallmark of the onset of classic turbulence and Lagrangian tracking revealed that it here originates from the presence of transient vortices in the active, collective motion of the bacteria locally reinforcing the externally imposed flow. These results link together two entirely different manifestations of turbulence and show the potential of the microfluidic approach to mimic the environment characteristic of certain niches of the human microbiome.

摘要

运动细菌的密集悬浮液,可能包括人类肠道微生物群,呈现出类似于经典高雷诺数湍流中观察到的集体动力学,这对化学和生物传输具有重要意义,但这种类比主要仍停留在定性层面。在此,我们展示了这样的实验:将枯草芽孢杆菌的密集悬浮液流经微通道,并使用最近开发的测速技术结合涡旋识别方法对流动悬浮液的速度统计数据进行量化。观察结果揭示了一种强烈的间歇性现象,即悬浮液的平均速度剖面在类似塞状流和抛物线流剖面之间波动。这种间歇性是经典湍流开始的一个标志,拉格朗日追踪表明,它在这里源于细菌活跃集体运动中瞬态涡旋的存在,这些涡旋局部增强了外部施加的流动。这些结果将湍流的两种完全不同的表现形式联系在一起,并展示了微流体方法模拟人类微生物群某些生态位环境特征的潜力。

相似文献

1
Intermittent turbulence in flowing bacterial suspensions.
J R Soc Interface. 2016 Jun;13(119). doi: 10.1098/rsif.2016.0175.
2
Transport powered by bacterial turbulence.
Phys Rev Lett. 2014 Apr 18;112(15):158101. doi: 10.1103/PhysRevLett.112.158101. Epub 2014 Apr 17.
3
Fluid dynamics of bacterial turbulence.
Phys Rev Lett. 2013 May 31;110(22):228102. doi: 10.1103/PhysRevLett.110.228102. Epub 2013 May 28.
4
Vortex dynamics and Lagrangian statistics in a model for active turbulence.
Eur Phys J E Soft Matter. 2018 Feb 14;41(2):21. doi: 10.1140/epje/i2018-11625-8.
5
Exploring order in active turbulence: Geometric rule and pairing order transition in confined bacterial vortices.
Biophys Physicobiol. 2022 May 12;19:1-9. doi: 10.2142/biophysico.bppb-v19.0020. eCollection 2022.
6
Confinement stabilizes a bacterial suspension into a spiral vortex.
Phys Rev Lett. 2013 Jun 28;110(26):268102. doi: 10.1103/PhysRevLett.110.268102. Epub 2013 Jun 24.
7
Collective swimming and the dynamics of bacterial turbulence.
Biophys J. 2008 Aug;95(4):1564-74. doi: 10.1529/biophysj.107.118257. Epub 2008 May 9.
8
Physical properties of collective motion in suspensions of bacteria.
Phys Rev Lett. 2012 Dec 14;109(24):248109. doi: 10.1103/PhysRevLett.109.248109.
9
Meso-scale turbulence in living fluids.
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14308-13. doi: 10.1073/pnas.1202032109. Epub 2012 Aug 20.
10
Active depinning of bacterial droplets: The collective surfing of .
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):5958-5963. doi: 10.1073/pnas.1703997114. Epub 2017 May 23.

引用本文的文献

1
Spatio-temporal patterns in growing bacterial suspensions.
Sci Rep. 2025 Aug 22;15(1):30948. doi: 10.1038/s41598-025-13297-5.
2
Cooperation in a fluid swarm of fuel-free micro-swimmers.
Nat Commun. 2022 Jan 10;13(1):184. doi: 10.1038/s41467-021-27870-9.
3
Fluidic bacterial diodes rectify magnetotactic cell motility in porous environments.
Nat Commun. 2021 Oct 12;12(1):5949. doi: 10.1038/s41467-021-26235-6.

本文引用的文献

1
How informative is the mouse for human gut microbiota research?
Dis Model Mech. 2015 Jan;8(1):1-16. doi: 10.1242/dmm.017400.
2
Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota.
Gastroenterology. 2014 Nov;147(5):1055-63.e8. doi: 10.1053/j.gastro.2014.07.020. Epub 2014 Jul 18.
3
Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut.
Cell Host Microbe. 2013 Nov 13;14(5):571-81. doi: 10.1016/j.chom.2013.10.009.
4
Ghost particle velocimetry: accurate 3D flow visualization using standard lab equipment.
Phys Rev Lett. 2013 Jul 26;111(4):048101. doi: 10.1103/PhysRevLett.111.048101. Epub 2013 Jul 25.
5
Non-Newtonian viscosity of Escherichia coli suspensions.
Phys Rev Lett. 2013 Jun 28;110(26):268103. doi: 10.1103/PhysRevLett.110.268103. Epub 2013 Jun 26.
6
Fluid dynamics of bacterial turbulence.
Phys Rev Lett. 2013 May 31;110(22):228102. doi: 10.1103/PhysRevLett.110.228102. Epub 2013 May 28.
7
The human microbiome as a reservoir of antimicrobial resistance.
Front Microbiol. 2013 Apr 17;4:87. doi: 10.3389/fmicb.2013.00087. eCollection 2013.
8
Physical properties of collective motion in suspensions of bacteria.
Phys Rev Lett. 2012 Dec 14;109(24):248109. doi: 10.1103/PhysRevLett.109.248109.
9
Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow.
Lab Chip. 2012 Jun 21;12(12):2165-74. doi: 10.1039/c2lc40074j. Epub 2012 Mar 20.
10
Small intestinal bacterial overgrowth syndrome.
World J Gastroenterol. 2010 Jun 28;16(24):2978-90. doi: 10.3748/wjg.v16.i24.2978.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验