Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Yaan 625000, PR China.
Microbiol Res. 2014 Jan 20;169(1):76-82. doi: 10.1016/j.micres.2013.07.003. Epub 2013 Aug 6.
Plant growth-promoting rhizobacteria promote plant growth by direct and indirect mechanisms. We isolated twelve bacterial strains showing different degrees of phosphate solubilizing activity from maize rhizosphere. Four isolates solubilized over 300 μg mL⁻¹ phosphate from insoluble Ca₃(PO₄)₂, with isolate SCAUK0330 solubilizing over 450 μg mL⁻¹. Based on the 16S rRNA gene sequence analysis SCAUK0330 was identified as Burkholderia cepacia. SCAUK0330 grew at 10-40 °C and pH 4.0-10.0, tolerated up to 5% NaCl, and showed antagonism against nine pathogenic fungi. SCAUK0330 promoted the growth of both healthy and Helminthosporium maydis infected maize plants, indicating that the isolate was a good candidate to be applied as a biofertilizer and a biocontrol agent under a wide range of environmental conditions.The expression of a single SCAUK0330 gene gave E. coli a pH decrease linked ability to solubilize phosphate. The nucleotide and the deduced amino acid sequences of this phosphate solubilization linked gene showed high degree of sequence identity with B. cepacia E37gabY. The production of gluconic acid is considered as the principle mechanism for phosphate solubilization. In agreement with the proposed periplasmic location of the gluconic acid production, the predicted signal peptide and transmembrane regions implied that GabY is membrane bound.
植物促生根际细菌通过直接和间接机制促进植物生长。我们从玉米根际中分离出了 12 株具有不同程度溶磷能力的细菌。其中 4 个分离株能从不溶性的 Ca₃(PO₄)₂中溶解超过 300μg mL⁻¹的磷酸盐,而分离株 SCAUK0330 能溶解超过 450μg mL⁻¹的磷酸盐。根据 16S rRNA 基因序列分析,SCAUK0330 被鉴定为伯克霍尔德菌。SCAUK0330 在 10-40°C 和 pH4.0-10.0 的条件下生长,能耐受高达 5%的 NaCl,对 9 种致病真菌表现出拮抗作用。SCAUK0330 能促进健康玉米植株和感染 Helminthosporium maydis 的玉米植株的生长,这表明该分离株是一种很有前途的生物肥料和生物防治剂,能在广泛的环境条件下应用。单一 SCAUK0330 基因的表达使大肠杆菌具有降低 pH 值并溶解磷酸盐的能力。该磷酸盐溶解相关基因的核苷酸和推导的氨基酸序列与 Burkholderia cepacia E37gabY 具有高度的序列同一性。产葡萄糖酸被认为是溶磷的主要机制。与推测的产葡萄糖酸在周质腔的位置一致,预测的信号肽和跨膜区域表明 GabY 是膜结合的。