Suppr超能文献

通过依赖组装的膜整合对整合膜蛋白进行质量控制。

Quality control of integral membrane proteins by assembly-dependent membrane integration.

机构信息

Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

出版信息

Mol Cell. 2013 Aug 8;51(3):297-309. doi: 10.1016/j.molcel.2013.07.013.

Abstract

Cell-surface multiprotein complexes are synthesized in the endoplasmic reticulum (ER), where they undergo cotranslational membrane integration and assembly. The quality control mechanisms that oversee these processes remain poorly understood. We show that less hydrophobic transmembrane (TM) regions derived from several single-pass TM proteins can enter the ER lumen completely. Once mislocalized, they are recognized by the Hsp70 chaperone BiP. In a detailed analysis for one of these proteins, the αβT cell receptor (αβTCR), we show that unassembled ER-lumenal subunits are rapidly degraded, whereas specific subunit interactions en route to the native receptor promote membrane integration of the less hydrophobic TM segments, thereby stabilizing the protein. For the TCR α chain, both complete ER import and subunit assembly depend on the same pivotal residue in its TM region. Thus, membrane integration linked to protein assembly allows cellular quality control of membrane proteins and connects the lumenal ER chaperone machinery to membrane protein biogenesis.

摘要

细胞表面多蛋白复合物在粗面内质网(ER)中合成,在那里它们经历共翻译膜整合和组装。监督这些过程的质量控制机制仍知之甚少。我们表明,来自几种单次跨膜(TM)蛋白的疏水性较小的跨膜(TM)区可以完全进入 ER 腔。一旦定位错误,它们就会被热休克蛋白 70 伴侣 BiP 识别。在对其中一种蛋白质,即 αβT 细胞受体(αβTCR)的详细分析中,我们表明未组装的 ER 腔亚基被迅速降解,而在向天然受体的过程中特定的亚基相互作用促进了疏水性较小的 TM 片段的膜整合,从而稳定了蛋白质。对于 TCR α 链,完全的 ER 导入和亚基组装都依赖于其 TM 区域中的相同关键残基。因此,与蛋白质组装相关的膜整合允许对膜蛋白进行细胞质量控制,并将腔 ER 伴侣机制与膜蛋白生物发生联系起来。

相似文献

1
Quality control of integral membrane proteins by assembly-dependent membrane integration.
Mol Cell. 2013 Aug 8;51(3):297-309. doi: 10.1016/j.molcel.2013.07.013.
2
Dimerization-dependent folding underlies assembly control of the clonotypic αβT cell receptor chains.
J Biol Chem. 2015 Oct 30;290(44):26821-31. doi: 10.1074/jbc.M115.689471. Epub 2015 Sep 23.
6
Co-chaperones of the mammalian endoplasmic reticulum.
Subcell Biochem. 2015;78:179-200. doi: 10.1007/978-3-319-11731-7_9.
9
Spatial localisation of chaperone distribution in the endoplasmic reticulum of yeast.
IET Syst Biol. 2012 Apr;6(2):54-63. doi: 10.1049/iet-syb.2011.0006.

引用本文的文献

1
GRP78 in Glioma Progression and Therapy: Implications for Targeted Approaches.
Biomedicines. 2025 Feb 6;13(2):382. doi: 10.3390/biomedicines13020382.
2
Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome.
Cell Discov. 2025 Jan 10;11(1):3. doi: 10.1038/s41421-024-00738-0.
3
Advances in the study of protein folding and endoplasmic reticulum-associated degradation in mammal cells.
J Zhejiang Univ Sci B. 2024 Mar 15;25(3):212-232. doi: 10.1631/jzus.B2300403.
4
Competition for calnexin binding regulates secretion and turnover of misfolded GPI-anchored proteins.
J Cell Biol. 2023 Oct 2;222(10). doi: 10.1083/jcb.202108160. Epub 2023 Sep 13.
5
Signal sequences encode information for protein folding in the endoplasmic reticulum.
J Cell Biol. 2023 Jan 2;222(1). doi: 10.1083/jcb.202203070. Epub 2022 Dec 2.
6
Intramembrane client recognition potentiates the chaperone functions of calnexin.
EMBO J. 2022 Dec 15;41(24):e110959. doi: 10.15252/embj.2022110959. Epub 2022 Oct 31.
7
The mechanisms of integral membrane protein biogenesis.
Nat Rev Mol Cell Biol. 2022 Feb;23(2):107-124. doi: 10.1038/s41580-021-00413-2. Epub 2021 Sep 23.
9
Allosteric activation of T cell antigen receptor signaling by quaternary structure relaxation.
Cell Rep. 2021 Jul 13;36(2):109375. doi: 10.1016/j.celrep.2021.109375.

本文引用的文献

1
Extreme C-terminal sites are posttranslocationally glycosylated by the STT3B isoform of the OST.
J Cell Biol. 2013 Apr 1;201(1):81-95. doi: 10.1083/jcb.201301031. Epub 2013 Mar 25.
3
Distinct TCR signaling pathways drive proliferation and cytokine production in T cells.
Nat Immunol. 2013 Mar;14(3):262-70. doi: 10.1038/ni.2538. Epub 2013 Feb 3.
4
Sampling the membrane: function of rhomboid-family proteins.
Trends Cell Biol. 2013 May;23(5):210-7. doi: 10.1016/j.tcb.2013.01.002. Epub 2013 Jan 28.
5
Flagging and docking: dual roles for N-glycans in protein quality control and cellular proteostasis.
Trends Biochem Sci. 2012 Oct;37(10):404-10. doi: 10.1016/j.tibs.2012.07.005. Epub 2012 Aug 23.
6
Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins.
Mol Cell. 2012 Aug 24;47(4):558-69. doi: 10.1016/j.molcel.2012.06.008. Epub 2012 Jul 12.
7
Understanding integration of α-helical membrane proteins: the next steps.
Trends Biochem Sci. 2012 Aug;37(8):303-8. doi: 10.1016/j.tibs.2012.05.003. Epub 2012 Jun 29.
8
Orientational preferences of neighboring helices can drive ER insertion of a marginally hydrophobic transmembrane helix.
Mol Cell. 2012 Feb 24;45(4):529-40. doi: 10.1016/j.molcel.2011.12.024. Epub 2012 Jan 25.
9
ERdj4 protein is a soluble endoplasmic reticulum (ER) DnaJ family protein that interacts with ER-associated degradation machinery.
J Biol Chem. 2012 Mar 9;287(11):7969-78. doi: 10.1074/jbc.M111.311290. Epub 2012 Jan 20.
10
Mechanisms for quality control of misfolded transmembrane proteins.
Biochim Biophys Acta. 2012 Apr;1818(4):1108-14. doi: 10.1016/j.bbamem.2011.11.007. Epub 2011 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验