Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
Dev Biol. 2013 Oct 1;382(1):268-79. doi: 10.1016/j.ydbio.2013.07.027. Epub 2013 Aug 6.
The sea urchin oral ectoderm gene regulatory network (GRN) model has increased in complexity as additional genes are added to it, revealing its multiple spatial regulatory state domains. The formation of the oral ectoderm begins with an oral-aboral redox gradient, which is interpreted by the cis-regulatory system of the nodal gene to cause its expression on the oral side of the embryo. Nodal signaling drives cohorts of regulatory genes within the oral ectoderm and its derived subdomains. Activation of these genes occurs sequentially, spanning the entire blastula stage. During this process the stomodeal subdomain emerges inside of the oral ectoderm, and bilateral subdomains defining the lateral portions of the future ciliary band emerge adjacent to the central oral ectoderm. Here we examine two regulatory genes encoding repressors, sip1 and ets4, which selectively prevent transcription of oral ectoderm genes until their expression is cleared from the oral ectoderm as an indirect consequence of Nodal signaling. We show that the timing of transcriptional de-repression of sip1 and ets4 targets which occurs upon their clearance explains the dynamics of oral ectoderm gene expression. In addition two other repressors, the direct Nodal target not, and the feed forward Nodal target goosecoid, repress expression of regulatory genes in the central animal oral ectoderm thereby confining their expression to the lateral domains of the animal ectoderm. These results have permitted construction of an enhanced animal ectoderm GRN model highlighting the repressive interactions providing precise temporal and spatial control of regulatory gene expression.
海胆口腔外胚层基因调控网络(GRN)模型随着更多基因的加入而变得更加复杂,揭示了其多个空间调控状态域。口腔外胚层的形成始于一个口腔-肛门氧化还原梯度,该梯度被节点基因的顺式调控系统解释,导致其在胚胎的口腔侧表达。节点信号驱动口腔外胚层及其衍生子域内的调控基因群。这些基因的激活是顺序发生的,跨越整个囊胚阶段。在此过程中,口部亚域在口腔外胚层内部出现,而定义未来纤毛带侧部的双侧亚域则出现在中央口腔外胚层的相邻部位。在这里,我们研究了两个编码抑制剂的调节基因,sip1 和 ets4,它们选择性地阻止口腔外胚层基因的转录,直到它们的表达由于节点信号的间接作用而从口腔外胚层中清除。我们表明,sip1 和 ets4 靶点的转录去抑制的时间发生在它们被清除时,这解释了口腔外胚层基因表达的动力学。此外,另外两个抑制剂,即直接的节点靶标 not 和前馈节点靶标 goosecoid,抑制了动物口腔外胚层中调控基因的表达,从而将其表达局限于动物外胚层的侧域。这些结果允许构建一个增强的动物外胚层 GRN 模型,突出了抑制性相互作用,为调控基因表达提供了精确的时空控制。