1] Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany [2] Université de Lyon, Laboratoire de Physique, École Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon CEDEX 07, France.
Nat Mater. 2013 Nov;12(11):1033-7. doi: 10.1038/nmat3729. Epub 2013 Aug 11.
The second Wien effect describes the nonlinear, non-equilibrium response of a weak electrolyte in moderate to high electric fields. Onsager's 1934 electrodiffusion theory, along with various extensions, has been invoked for systems and phenomena as diverse as solar cells, surfactant solutions, water splitting reactions, dielectric liquids, electrohydrodynamic flow, water and ice physics, electrical double layers, non-ohmic conduction in semiconductors and oxide glasses, biochemical nerve response and magnetic monopoles in spin ice. In view of this technological importance and the experimental ubiquity of such phenomena, it is surprising that Onsager's Wien effect has never been studied by numerical simulation. Here we present simulations of a lattice Coulomb gas, treating the widely applicable case of a double equilibrium for free charge generation. We obtain detailed characterization of the Wien effect and confirm the accuracy of the analytical theories as regards the field evolution of the free charge density and correlations. We also demonstrate that simulations can uncover further corrections, such as how the field-dependent conductivity may be influenced by details of microscopic dynamics. We conclude that lattice simulation offers a powerful means by which to model and investigate system-specific corrections to the Onsager theory, and thus constitutes a valuable tool for detailed theoretical studies of the numerous practical applications of the second Wien effect.
第二维恩效应描述了弱电解质在中等至强电场中的非线性、非平衡响应。昂萨格的 1934 年电扩散理论以及各种扩展理论已经被应用于各种系统和现象,如太阳能电池、表面活性剂溶液、水分解反应、介电液体、电动力学流动、水和冰物理学、双电层、半导体和氧化物玻璃中的非欧姆传导、生物神经反应和自旋冰中的磁单极子。鉴于这种技术重要性以及这种现象在实验中的普遍存在,令人惊讶的是,昂萨格的维恩效应从未通过数值模拟进行过研究。在这里,我们对格点库仑气体进行了模拟,处理了自由电荷生成的广泛适用的双平衡情况。我们详细地描述了维恩效应,并确认了分析理论在自由电荷密度和相关性的场演化方面的准确性。我们还证明,模拟可以揭示进一步的修正,例如场相关电导率如何受到微观动力学细节的影响。我们的结论是,晶格模拟为模拟和研究昂萨格理论的系统特定修正提供了一种强大的方法,因此是对第二维恩效应的众多实际应用进行详细理论研究的有价值工具。