Departments of Pathology, Genome Sciences, Anesthesiology, Environmental Health and Biostatistics, University of Washington, Seattle, WA; and Department of Pharmacology, Weill Cornell Medical College, New York, NY.
Circ Heart Fail. 2013 Sep 1;6(5):1067-76. doi: 10.1161/CIRCHEARTFAILURE.113.000406. Epub 2013 Aug 9.
We investigated the protective effects of mitochondrial-targeted antioxidant and protective peptides, Szeto-Schiller (SS) 31 and SS20, on cardiac function, proteomic remodeling, and signaling pathways.
We applied an improved label-free shotgun proteomics approach to evaluate the global proteomics changes in transverse aortic constriction (TAC)-induced heart failure and the associated signaling pathway changes using ingenuity pathway analysis. We found that 538 proteins significantly changed after TAC, which mapped to 53 pathways. The top pathways were in the categories of actin cytoskeleton, mitochondrial function, intermediate metabolism, glycolysis/gluconeogenesis, and citrate cycle. Concomitant treatment with SS31 ameliorated the congestive heart failure phenotypes and mitochondrial damage induced by TAC, in parallel with global attenuation of mitochondrial proteome changes, with an average of 84% protection of mitochondrial and 69% of nonmitochondrial protein changes. This included significant amelioration of all the ingenuity pathway analysis noted above. SS20 had only modest effects on heart failure and this tracked with only partial attenuation of global proteomics changes; furthermore, actin cytoskeleton pathways were significantly protected in SS20, whereas mitochondrial and metabolic pathways essentially were not.
This study elucidates the signaling pathways significantly changed in pressure-overload-induced heart failure. The global attenuation of TAC-induced proteomic alterations by the mitochondrial-targeted peptide SS31 suggests that perturbed mitochondrial function may be an upstream signal to many of the pathway alterations in TAC and supports the potential clinical application of mitochondrial-targeted peptide drugs for the treatment heart failure.
我们研究了靶向线粒体的抗氧化和保护肽 Szeto-Schiller(SS)31 和 SS20 对心脏功能、蛋白质组重构和信号通路的保护作用。
我们应用了一种改进的无标记 shotgun 蛋白质组学方法,通过使用 ingenuity 通路分析评估了主动脉缩窄(TAC)诱导的心力衰竭中的全局蛋白质组变化和相关的信号通路变化。我们发现,TAC 后有 538 种蛋白质发生了显著变化,这些蛋白质映射到 53 条通路。前 5 条通路分别为肌动蛋白细胞骨架、线粒体功能、中间代谢、糖酵解/糖异生和柠檬酸循环。同时用 SS31 治疗可改善 TAC 诱导的充血性心力衰竭表型和线粒体损伤,同时还可全面减轻线粒体蛋白质组的变化,线粒体和非线粒体蛋白质变化的平均保护率分别为 84%和 69%。这包括对所有 ingenuity 通路分析的显著改善。SS20 对心力衰竭仅有轻微作用,这与全球蛋白质组变化的部分衰减有关;此外,SS20 可显著改善肌动蛋白细胞骨架通路,而线粒体和代谢通路则基本不受影响。
本研究阐明了压力超负荷诱导的心力衰竭中显著改变的信号通路。靶向线粒体的肽 SS31 可全面减轻 TAC 诱导的蛋白质组改变,提示受损的线粒体功能可能是 TAC 中许多通路改变的上游信号,并支持靶向线粒体肽药物治疗心力衰竭的潜在临床应用。