From the Laboratory of Molecular Gerontology, NIA, National Institutes of Health, National Institutes of Health Biomedical Research Center, Baltimore, Maryland 21224.
J Biol Chem. 2013 Sep 27;288(39):28217-29. doi: 10.1074/jbc.M113.496463. Epub 2013 Aug 9.
G-quadruplex (G4) DNA, an alternate structure formed by Hoogsteen hydrogen bonds between guanines in G-rich sequences, threatens genomic stability by perturbing normal DNA transactions including replication, repair, and transcription. A variety of G4 topologies (intra- and intermolecular) can form in vitro, but the molecular architecture and cellular factors influencing G4 landscape in vivo are not clear. Helicases that unwind structured DNA molecules are emerging as an important class of G4-resolving enzymes. The BRCA1-associated FANCJ helicase is among those helicases able to unwind G4 DNA in vitro, and FANCJ mutations are associated with breast cancer and linked to Fanconi anemia. FANCJ belongs to a conserved iron-sulfur (Fe S) cluster family of helicases important for genomic stability including XPD (nucleotide excision repair), DDX11 (sister chromatid cohesion), and RTEL (telomere metabolism), genetically linked to xeroderma pigmentosum/Cockayne syndrome, Warsaw breakage syndrome, and dyskeratosis congenita, respectively. To elucidate the role of FANCJ in genomic stability, its molecular functions in G4 metabolism were examined. FANCJ efficiently unwound in a kinetic and ATPase-dependent manner entropically favored unimolecular G4 DNA, whereas other Fe-S helicases tested did not. The G4-specific ligands Phen-DC3 or Phen-DC6 inhibited FANCJ helicase on unimolecular G4 ∼1000-fold better than bi- or tetramolecular G4 DNA. The G4 ligand telomestatin induced DNA damage in human cells deficient in FANCJ but not DDX11 or XPD. These findings suggest FANCJ is a specialized Fe-S cluster helicase that preserves chromosomal stability by unwinding unimolecular G4 DNA likely to form in transiently unwound single-stranded genomic regions.
G-四链体(G4)DNA 是一种由富含鸟嘌呤的序列中鸟嘌呤之间的 Hoogsteen 氢键形成的替代结构,通过扰乱正常的 DNA 代谢,包括复制、修复和转录,威胁基因组稳定性。各种 G4 拓扑结构(分子内和分子间)可以在体外形成,但体内影响 G4 景观的分子结构和细胞因素尚不清楚。解开结构 DNA 分子的解旋酶正在成为一类重要的 G4 解旋酶。BRCA1 相关的 FANCJ 解旋酶是能够在体外解开 G4 DNA 的解旋酶之一,并且 FANCJ 突变与乳腺癌有关,并与范可尼贫血症相关。FANCJ 属于铁硫(Fe-S)簇家族的解旋酶,对于包括 XPD(核苷酸切除修复)、DDX11(姐妹染色单体粘连)和 RTEL(端粒代谢)在内的基因组稳定性至关重要,这些酶分别与着色性干皮病/ Cockayne 综合征、华氏破裂综合征和先天性角化不良遗传相关。为了阐明 FANCJ 在基因组稳定性中的作用,研究了其在 G4 代谢中的分子功能。FANCJ 以动力学和 ATP 依赖性方式有效地解开了热力学有利的单分子 G4 DNA,而测试的其他 Fe-S 解旋酶则没有。G4 特异性配体 Phen-DC3 或 Phen-DC6 抑制 FANCJ 解旋酶对单分子 G4 的作用比双分子或四分子 G4 DNA 强 1000 倍。G4 配体端粒斯汀在缺乏 FANCJ 的人类细胞中诱导 DNA 损伤,但在缺乏 DDX11 或 XPD 的细胞中则没有。这些发现表明 FANCJ 是一种专门的 Fe-S 簇解旋酶,通过解开可能在瞬态解开的单链基因组区域中形成的单分子 G4 DNA 来维持染色体稳定性。