Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America.
PLoS One. 2013 Jul 25;8(7):e70491. doi: 10.1371/journal.pone.0070491. Print 2013.
Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N). In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy); the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system.
理解植物功能性状如何塑造陆地养分限制和循环是生态学的一个主要挑战。对于热带低地森林生态系统来说尤其如此,这些生态系统在分类学和功能上可能是多样的,并且富含生物可利用氮(N)。然而,在许多热带地区,多样的森林与单优森林(一种物种> 60%的树冠)并存;树木单优的长期生物地球化学后果尚不清楚。特别是不确定的是,单优植物-土壤系统是否会在生态系统水平上改变养分平衡。在这里,我们使用化学和稳定同位素技术研究了特立尼达岛上的古老 Mora excelsa 和多样流域雨林中的 N 循环。在 26 个小流域森林和 4 年的时间里,我们表明 Mora 单优导致植物-土壤系统中的生物可利用硝酸盐减少到极低的水平,这反过来又导致流域尺度的水文和气体 N 损失相对较小,而相邻的富 N 多样森林则相反。 Mora 森林中土壤和溪流中的生物可利用 N 保持低水平且随着时间的推移非常稳定;相比之下,多样森林中的 N 水平对季节性和年际降雨变化表现出很高的敏感性。多样森林的总矿物 N 损失超过大气沉积的输入,与 N 饱和一致,而 Mora 森林的损失则没有,表明 N 限制。我们的测量结果表明,这种差异不能用环境因素来解释,而是由于 Mora 植物-土壤系统中生物可利用 N 的低内部生产和高效保留造成的。这些结果表明,树木通过固氮作用增强生态系统 N 供应的情况下,树木对 N 循环的影响与树木对 N 循环的影响相反,并表明随着时间的推移,Mora 单优可能会导致植物-土壤系统中 N 的逐渐消耗。