Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21713-6. doi: 10.1073/pnas.0912111106. Epub 2009 Dec 7.
Loss of nitrogen (N) from land limits the uptake and storage of atmospheric CO(2) by the biosphere, influencing Earth's climate system and myriads of the global ecological functions and services on which humans rely. Nitrogen can be lost in both dissolved and gaseous phases; however, the partitioning of these vectors remains controversial. Particularly uncertain is whether the bacterial conversion of plant available N to gaseous forms (denitrification) plays a major role in structuring global N supplies in the nonagrarian centers of Earth. Here, we use the isotope composition of N ((15)N/(14)N) to constrain the transfer of this nutrient from the land to the water and atmosphere. We report that the integrated (15)N/(14)N of the natural terrestrial biosphere is elevated with respect to that of atmospheric N inputs. This cannot be explained by preferential loss of (14)N to waterways; rather, it reflects a history of low (15)N/(14)N gaseous N emissions to the atmosphere owing to denitrifying bacteria in the soil. Parameterizing a simple model with global N isotope data, we estimate that soil denitrification (including N(2)) accounts for approximately 1/3 of the total N lost from the unmanaged terrestrial biosphere. Applying this fraction to estimates of N inputs, N(2)O and NO(x) fluxes, we calculate that approximately 28 Tg of N are lost annually via N(2) efflux from the natural soil. These results place isotopic constraints on the widely held belief that denitrifying bacteria account for a significant fraction of the missing N in the global N cycle.
氮(N)从陆地的损失限制了生物圈对大气 CO₂的吸收和储存,从而影响了地球的气候系统以及无数人类赖以生存的全球生态功能和服务。氮可以以溶解态和气态两种形式流失;然而,这些载体的分配仍然存在争议。特别不确定的是,细菌将植物可利用的 N 转化为气态形式(反硝化作用)是否在构建地球非农业中心的全球 N 供应方面发挥主要作用。在这里,我们使用 N 的同位素组成((15)N/(14)N)来约束这种养分从陆地向水和大气的转移。我们报告说,与大气 N 输入相比,自然陆地生物圈的综合(15)N/(14)N 升高了。这不能用(14)N 优先向水道流失来解释;相反,它反映了由于土壤中的反硝化细菌,向大气中排放低(15)N/(14)N 气态 N 的历史。通过使用全球 N 同位素数据对一个简单模型进行参数化,我们估计土壤反硝化作用(包括 N₂)占未管理陆地生物圈中损失的总 N 的约 1/3。将这一分数应用于 N 输入、N₂O 和 NO(x)通量的估计,我们计算出每年约有 28 Tg 的 N 通过自然土壤中的 N₂逸出而损失。这些结果对反硝化细菌在全球 N 循环中占缺失 N 的很大一部分这一广泛观点施加了同位素限制。