Institute of Medical Imaging and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.
Phys Med Biol. 2013 Sep 7;58(17):6029-46. doi: 10.1088/0031-9155/58/17/6029. Epub 2013 Aug 12.
In this paper, we present a deformable registration framework for the diffusion tensor image (DTI) using polynomial expansion. The use of polynomial expansion in image registration has previously been shown to be beneficial due to fast convergence and high accuracy. However, earlier work was developed only for 3D scalar medical image registration. In this work, it is shown how polynomial expansion can be applied to DTI registration. A new measurement is proposed for DTI registration evaluation, which seems to be robust and sensitive in evaluating the result of DTI registration. We present the algorithms for DTI registration using polynomial expansion by the fractional anisotropy image, and an explicit tensor reorientation strategy is inherent to the registration process. Analytic transforms with high accuracy are derived from polynomial expansion and used for transforming the tensor's orientation. Three measurements for DTI registration evaluation are presented and compared in experimental results. The experiments for algorithm validation are designed from simple affine deformation to nonlinear deformation cases, and the algorithms using polynomial expansion give a good performance in both cases. Inter-subject DTI registration results are presented showing the utility of the proposed method.
在本文中,我们提出了一种使用多项式展开的用于扩散张量图像(DTI)的可变形配准框架。在图像配准中使用多项式展开已经被证明是有益的,因为它具有快速收敛和高精度的特点。然而,早期的工作仅针对 3D 标量医学图像配准进行了开发。在这项工作中,展示了如何将多项式展开应用于 DTI 配准。提出了一种用于 DTI 配准评估的新测量方法,该方法在评估 DTI 配准的结果时似乎具有稳健性和敏感性。我们通过分数各向异性图像提出了使用多项式展开的 DTI 配准算法,并且配准过程中固有明确的张量重定向策略。从多项式展开中推导出具有高精度的解析变换,并将其用于变换张量的方向。在实验结果中提出并比较了三种用于 DTI 配准评估的测量方法。为了验证算法而设计的实验从简单的仿射变形到非线性变形案例,使用多项式展开的算法在这两种情况下都表现出了良好的性能。展示了提出的方法在跨个体 DTI 配准结果中的实用性。