Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK, Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland, Department of Environmental Research, Siauliai University, Vilniaus gatvė 88, 76285 Siauliai, Lithuania, Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK, Department of Biosciences, University of Helsinki, Biocenter 2, PO Box 56, 00014 Helsinki, Finland, Institute of Biotechnology, University of Helsinki, Biocenter 2, PO Box 56, 00014 Helsinki, Finland and Astbury Centre for Structural Molecular Biology and School of Cellular and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
Nucleic Acids Res. 2013 Nov;41(20):9396-410. doi: 10.1093/nar/gkt713. Epub 2013 Aug 11.
Many complex viruses package their genomes into empty protein shells and bacteriophages of the Cystoviridae family provide some of the simplest models for this. The cystoviral hexameric NTPase, P4, uses chemical energy to translocate single-stranded RNA genomic precursors into the procapsid. We previously dissected the mechanism of RNA translocation for one such phage, 12, and have now investigated three further highly divergent, cystoviral P4 NTPases (from 6, 8 and 13). High-resolution crystal structures of the set of P4s allow a structure-based phylogenetic analysis, which reveals that these proteins form a distinct subfamily of the RecA-type ATPases. Although the proteins share a common catalytic core, they have different specificities and control mechanisms, which we map onto divergent N- and C-terminal domains. Thus, the RNA loading and tight coupling of NTPase activity with RNA translocation in 8 P4 is due to a remarkable C-terminal structure, which wraps right around the outside of the molecule to insert into the central hole where RNA binds to coupled L1 and L2 loops, whereas in 12 P4, a C-terminal residue, serine 282, forms a specific hydrogen bond to the N7 of purines ring to confer purine specificity for the 12 enzyme.
许多复杂的病毒将其基因组包装成空的蛋白质外壳,而尾噬菌体科的噬菌体则为这一过程提供了一些最简单的模型。尾噬菌体的六聚体 NTP 酶 P4 利用化学能将单链 RNA 基因组前体转运到原衣壳中。我们之前已经解析了一种噬菌体 12 的 RNA 转运机制,现在又研究了另外三种高度分化的尾噬菌体 P4 NTP 酶(来自 6、8 和 13)。这组 P4 的高分辨率晶体结构允许进行基于结构的系统发育分析,该分析揭示了这些蛋白质形成 RecA 型 ATP 酶的一个独特亚家族。尽管这些蛋白质共享一个共同的催化核心,但它们具有不同的特异性和控制机制,我们将其映射到不同的 N 端和 C 端结构域上。因此,8 P4 中的 RNA 加载和 NTP 酶活性与 RNA 转运的紧密偶联是由于其独特的 C 端结构,该结构包裹在分子的外部,插入到中央孔中,RNA 与耦合的 L1 和 L2 环结合,而在 12 P4 中,C 端残基丝氨酸 282 与嘌呤环的 N7 形成特定的氢键,赋予 12 酶嘌呤特异性。