Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom.
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):E3360-7. doi: 10.1073/pnas.1309157110. Epub 2013 Aug 12.
Members of the cytochromes P450 superfamily (P450s) catalyze a huge variety of oxidation reactions in microbes and higher organisms. Most P450 families are highly divergent, but in contrast the cytochrome P450 14α-sterol demethylase (CYP51) family is one of the most ancient and conserved, catalyzing sterol 14α-demethylase reactions required for essential sterol synthesis across the fungal, animal, and plant kingdoms. Oats (Avena spp.) produce antimicrobial compounds, avenacins, that provide protection against disease. Avenacins are synthesized from the simple triterpene, β-amyrin. Previously we identified a gene encoding a member of the CYP51 family of cytochromes P450, AsCyp51H10 (also known as Saponin-deficient 2, Sad2), that is required for avenacin synthesis in a forward screen for avenacin-deficient oat mutants. sad2 mutants accumulate β-amyrin, suggesting that they are blocked early in the pathway. Here, using a transient plant expression system, we show that AsCYP51H10 is a multifunctional P450 capable of modifying both the C and D rings of the pentacyclic triterpene scaffold to give 12,13β-epoxy-3β,16β-dihydroxy-oleanane (12,13β-epoxy-16β-hydroxy-β-amyrin). Molecular modeling and docking experiments indicate that C16 hydroxylation is likely to precede C12,13 epoxidation. Our computational modeling, in combination with analysis of a suite of sad2 mutants, provides insights into the unusual catalytic behavior of AsCYP51H10 and its active site mutants. Fungal bioassays show that the C12,13 epoxy group is an important determinant of antifungal activity. Accordingly, the oat AsCYP51H10 enzyme has been recruited from primary metabolism and has acquired a different function compared to other characterized members of the plant CYP51 family--as a multifunctional stereo- and regio-specific hydroxylase in plant specialized metabolism.
细胞色素 P450 超家族(P450s)的成员在微生物和高等生物中催化各种氧化反应。大多数 P450 家族高度分化,但相反,细胞色素 P450 14α-固醇脱甲基酶(CYP51)家族是最古老和最保守的家族之一,催化真菌、动物和植物王国中必需固醇合成所需的固醇 14α-脱甲基酶反应。燕麦(Avena spp.)产生抗菌化合物燕麦素,提供对疾病的保护。燕麦素是由简单的三萜 β-香树脂醇合成的。之前,我们鉴定了一个编码细胞色素 P450 CYP51 家族成员的基因,AsCyp51H10(也称为皂素缺陷 2,Sad2),该基因在前向筛选燕麦素缺陷型燕麦突变体中是燕麦素合成所必需的。sad2 突变体积累 β-香树脂醇,表明它们在该途径的早期被阻断。在这里,我们使用瞬时植物表达系统表明,AsCYP51H10 是一种多功能 P450,能够修饰五环三萜骨架的 C 和 D 环,生成 12,13β-环氧-3β,16β-二羟基-齐墩烷(12,13β-环氧-16β-羟基-β-香树脂醇)。分子建模和对接实验表明,C16 羟化可能先于 C12,13 环氧化。我们的计算建模,结合对一系列 sad2 突变体的分析,为 AsCYP51H10 及其活性位点突变体的异常催化行为提供了深入了解。真菌生物测定表明,C12,13 环氧基是抗真菌活性的重要决定因素。因此,与其他已鉴定的植物 CYP51 家族成员相比,燕麦 AsCYP51H10 酶已从初级代谢中招募,并获得了不同的功能-作为植物特化代谢中多功能立体和区域特异性羟化酶。