Suppr超能文献

MATIN:一种基于随机网络编码的高质量对等实时视频流框架。

MATIN: a random network coding based framework for high quality peer-to-peer live video streaming.

机构信息

Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.

出版信息

PLoS One. 2013 Aug 5;8(8):e69844. doi: 10.1371/journal.pone.0069844. Print 2013.

Abstract

In recent years, Random Network Coding (RNC) has emerged as a promising solution for efficient Peer-to-Peer (P2P) video multicasting over the Internet. This probably refers to this fact that RNC noticeably increases the error resiliency and throughput of the network. However, high transmission overhead arising from sending large coefficients vector as header has been the most important challenge of the RNC. Moreover, due to employing the Gauss-Jordan elimination method, considerable computational complexity can be imposed on peers in decoding the encoded blocks and checking linear dependency among the coefficients vectors. In order to address these challenges, this study introduces MATIN which is a random network coding based framework for efficient P2P video streaming. The MATIN includes a novel coefficients matrix generation method so that there is no linear dependency in the generated coefficients matrix. Using the proposed framework, each peer encapsulates one instead of n coefficients entries into the generated encoded packet which results in very low transmission overhead. It is also possible to obtain the inverted coefficients matrix using a bit number of simple arithmetic operations. In this regard, peers sustain very low computational complexities. As a result, the MATIN permits random network coding to be more efficient in P2P video streaming systems. The results obtained from simulation using OMNET++ show that it substantially outperforms the RNC which uses the Gauss-Jordan elimination method by providing better video quality on peers in terms of the four important performance metrics including video distortion, dependency distortion, End-to-End delay and Initial Startup delay.

摘要

近年来,随机网络编码(RNC)已成为一种有前途的解决方案,可通过 Internet 实现高效的对等(P2P)视频组播。这可能是因为 RNC 显著提高了网络的容错能力和吞吐量。但是,由于发送大系数向量作为头而导致的高传输开销一直是 RNC 的最大挑战。此外,由于采用了高斯-约旦消元法,解码编码块和解码系数向量之间的线性相关性可能会给对等方带来相当大的计算复杂度。为了解决这些挑战,本研究引入了 MATIN,这是一种基于随机网络编码的高效 P2P 视频流框架。MATIN 包括一种新颖的系数矩阵生成方法,因此生成的系数矩阵中不存在线性相关性。使用所提出的框架,每个对等方将一个而不是 n 个系数条目封装到生成的编码数据包中,这导致传输开销非常低。也可以使用简单的算术运算的位数获得逆系数矩阵。在这方面,对等方承担的计算复杂度非常低。因此,MATIN 允许随机网络编码在 P2P 视频流系统中更加高效。使用 OMNET++进行仿真获得的结果表明,与使用高斯-约旦消元法的 RNC 相比,它在四个重要性能指标(包括视频失真、依赖失真、端到端延迟和初始启动延迟)方面为对等方提供了更好的视频质量,因此它具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388d/3734139/730245663aad/pone.0069844.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验