Suppr超能文献

基于基因组序列的随机交配的蒙特卡罗置换检验。

A Monte Carlo permutation test for random mating using genome sequences.

机构信息

Chinese Academy of Sciences and Max Planck Society-CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

出版信息

PLoS One. 2013 Aug 5;8(8):e71496. doi: 10.1371/journal.pone.0071496. Print 2013.

Abstract

Testing for random mating of a population is important in population genetics, because deviations from randomness of mating may indicate inbreeding, population stratification, natural selection, or sampling bias. However, current methods use only observed numbers of genotypes and alleles, and do not take advantage of the fact that the advent of sequencing technology provides an opportunity to investigate this topic in unprecedented detail. To address this opportunity, a novel statistical test for random mating is required in population genomics studies for which large sequencing datasets are generally available. Here, we propose a Monte-Carlo-based-permutation test (MCP) as an approach to detect random mating. Computer simulations used to evaluate the performance of the permutation test indicate that its type I error is well controlled and that its statistical power is greater than that of the commonly used chi-square test (CHI). Our simulation study shows the power of our test is greater for datasets characterized by lower levels of migration between subpopulations. In addition, test power increases with increasing recombination rate, sample size, and divergence time of subpopulations. For populations exhibiting limited migration and having average levels of population divergence, the statistical power approaches 1 for sequences longer than 1 Mbp and for samples of 400 individuals or more. Taken together, our results suggest that our permutation test is a valuable tool to detect random mating of populations, especially in population genomics studies.

摘要

检测群体的随机交配对于群体遗传学非常重要,因为交配的非随机性可能表明近亲繁殖、群体分层、自然选择或抽样偏差。然而,目前的方法仅使用观察到的基因型和等位基因数量,并且没有利用测序技术的出现为我们提供了一个前所未有的细节研究这一课题的机会。为了利用这一机会,需要在通常具有大量测序数据的群体基因组学研究中提出一种新的用于随机交配的统计检验方法。在这里,我们提出了一种基于蒙特卡罗模拟的置换检验(MCP)方法,作为检测随机交配的一种方法。用于评估置换检验性能的计算机模拟表明,它的Ⅰ型错误得到了很好的控制,其统计功效大于常用的卡方检验(CHI)。我们的模拟研究表明,对于亚群之间迁移水平较低的数据集,我们的检验具有更高的功效。此外,检验功效随着重组率、样本量和亚群分歧时间的增加而增加。对于表现出有限迁移且具有平均种群分歧水平的群体,对于长度超过 1 Mbp 的序列和 400 个个体或更多的样本,统计功效接近 1。总的来说,我们的结果表明,我们的置换检验是一种检测群体随机交配的有效工具,特别是在群体基因组学研究中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383c/3734302/79f2912cbcce/pone.0071496.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验