Experimental Physics III, TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund, Germany.
J Magn Reson. 2013 Oct;235:42-9. doi: 10.1016/j.jmr.2013.07.002. Epub 2013 Jul 13.
Alterations of the blood flow are associated with various cardiovascular diseases. Precise knowledge of the velocity distribution is therefore important for understanding these diseases and predicting the effect of different medical intervention schemes. The goal of this work is to estimate the precision with which the velocity field can be measured and predicted by studying two simple model geometries with NMR micro imaging and computational fluid dynamics. For these initial experiments, we use water as an ideal test medium. The phantoms consist of tubes simulating a straight blood vessel and a step between two tubes of different diameters, which can be seen as a minimal model of the situation behind a stenosis. For both models, we compare the experimental data with the numerical prediction, using the experimental boundary conditions. For the simpler model, we also compare the data to the analytical solution. As an additional validation, we determine the divergence of the velocity field and verify that it vanishes within the experimental uncertainties. We discuss the resulting precision of the simulation and the outlook for extending this approach to the analysis of specific cases of arteriovascular problems.
血流的改变与各种心血管疾病有关。因此,精确了解速度分布对于理解这些疾病和预测不同医学干预方案的效果非常重要。这项工作的目的是通过使用 NMR 微观成象和计算流体动力学研究两个简单的模型几何结构,来估计速度场的测量和预测精度。对于这些初始实验,我们使用水作为理想的测试介质。仿体由模拟直血管的管子和两个不同直径的管子之间的台阶组成,这可以看作是狭窄后面情况的最小模型。对于这两个模型,我们使用实验边界条件将实验数据与数值预测进行比较。对于更简单的模型,我们还将数据与解析解进行比较。作为附加验证,我们确定速度场的散度并验证它在实验不确定度范围内为零。我们讨论了模拟的结果精度以及将这种方法扩展到分析特定的动脉血管问题的前景。