Beuman T H, Turner A M, Vitelli V
Instituut-Lorentz for Theoretical Physics, Leiden University, NL 2333 CA Leiden, The Netherlands.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jul;88(1):012115. doi: 10.1103/PhysRevE.88.012115. Epub 2013 Jul 15.
Random fields in nature often have, to a good approximation, Gaussian characteristics. For such fields, the number of maxima and minima are the same. Furthermore, the relative densities of umbilical points, topological defects which can be classified into three types, have certain fixed values. Phenomena described by nonlinear laws can, however, give rise to a non-Gaussian contribution, causing a deviation from these universal values. We consider a random surface, whose height is given by a nonlinear function of a Gaussian field. We find that, as a result of the non-Gaussianity, the density of maxima and minima no longer match and we calculate the relative imbalance between the two. We also calculate the change in the relative density of umbilics. This allows us not only to detect a perturbation, but to determine its size as well. This geometric approach offers an independent way of detecting non-Gaussianity, which even works in cases where the field itself can not be probed directly.
自然界中的随机场通常在很好的近似程度上具有高斯特性。对于这样的场,极大值和极小值的数量是相同的。此外,脐点(可分为三种类型的拓扑缺陷)的相对密度具有某些固定值。然而,由非线性定律描述的现象会产生非高斯贡献,导致偏离这些通用值。我们考虑一个随机表面,其高度由高斯场的非线性函数给出。我们发现,由于非高斯性,极大值和极小值的密度不再匹配,并且我们计算了两者之间的相对不平衡。我们还计算了脐点相对密度的变化。这不仅使我们能够检测到扰动,还能确定其大小。这种几何方法提供了一种检测非高斯性的独立方式,甚至在无法直接探测场本身的情况下也能起作用。