Bendito Enrique, Bowick Mark J, Medina Agustin, Yao Zhenwei
Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya, Barcelona, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jul;88(1):012405. doi: 10.1103/PhysRevE.88.012405. Epub 2013 Jul 29.
We investigate the structure of crystalline particle arrays on constant mean curvature (CMC) surfaces of revolution. Such curved crystals have been realized physically by creating charge-stabilized colloidal arrays on liquid capillary bridges. CMC surfaces of revolution, classified by Delaunay in 1841, include the 2-sphere, the cylinder, the vanishing mean curvature catenoid (a minimal surface), and the richer and less investigated unduloid and nodoid. We determine numerically candidate ground-state configurations for 1000 pointlike particles interacting with a pairwise-repulsive 1/r(3) potential, with distance r measured in three-dimensional Euclidean space R(3). We mimic stretching of capillary bridges by determining the equilibrium configurations of particles arrayed on a sequence of Delaunay surfaces obtained by increasing or decreasing the height at constant volume starting from a given initial surface, either a fat cylinder or a square cylinder. In this case, the stretching process takes one through a complicated sequence of Delaunay surfaces, each with different geometrical parameters, including the aspect ratio, mean curvature, and maximal Gaussian curvature. Unduloids, catenoids, and nodoids all appear in this process. Defect motifs in the ground state evolve from dislocations at the boundary to dislocations in the interior to pleats and scars in the interior and then isolated sevenfold disclinations in the interior as the capillary bridge narrows at the waist (equator) and the maximal (negative) Gaussian curvature grows. We also check theoretical predictions that the isolated disclinations are present in the ground state when the surface contains a geodesic disk with integrated Gaussian curvature exceeding -π/3. Finally, we explore minimal energy configurations on sets of slices of a given Delaunay surface, and we obtain configurations and defect motifs consistent with those seen in stretching.
我们研究了旋转常平均曲率(CMC)曲面上晶体颗粒阵列的结构。通过在液体毛细管桥上创建电荷稳定的胶体阵列,这种弯曲晶体已在物理上得以实现。1841年由德劳内分类的旋转CMC曲面包括2 - 球面、圆柱面、零平均曲率悬链面(一种极小曲面),以及更丰富但研究较少的波形面和纽结面。我们通过数值方法确定了1000个点状粒子的候选基态构型,这些粒子通过成对排斥的1/r³势相互作用,其中距离r是在三维欧几里得空间R³中测量的。我们通过确定排列在一系列德劳内曲面上的粒子的平衡构型来模拟毛细管桥的拉伸,这些德劳内曲面是从给定的初始曲面(要么是胖圆柱面要么是方圆柱面)开始,在体积不变的情况下通过增加或减小高度而得到的。在这种情况下,拉伸过程会经过一系列复杂的德劳内曲面,每个曲面都有不同的几何参数,包括纵横比、平均曲率和最大高斯曲率。波形面、悬链面和纽结面在这个过程中都会出现。基态中的缺陷图案从边界处的位错演变为内部的位错,再到内部的褶皱和疤痕,然后随着毛细管桥在腰部(赤道)变窄且最大(负)高斯曲率增大,演变为内部孤立的七重 disclinations。我们还检验了理论预测,即当曲面包含一个积分高斯曲率超过 -π/3的测地圆盘时,孤立的 disclinations会出现在基态中。最后,我们探索了给定德劳内曲面切片集合上的最小能量构型,并得到了与拉伸过程中所见一致的构型和缺陷图案。