Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, P.O. Box 2208, 71003 Heraklion, Crete, Greece.
Inorg Chem. 2013 Sep 3;52(17):9813-25. doi: 10.1021/ic400774p. Epub 2013 Aug 14.
Two novel porphyrin-porphyrin dyads, the symmetrical Zn[Porph]-Zn[Porph] (2) and unsymmetrical Zn[Porph]-H2[Porph] (4), where Zn[Porph] and H2[Porph] are the metalated and free-base forms of 5-(4-aminophenyl)-10,15,20-triphenylporphyrin, respectively, in which two porphyrin units are covalently bridged by 1,3,5-triazine, have been synthesized via the stepwise amination of cyanuric chloride. The dyads are also functionalized by a terminal carboxylic acid group of a glycine moiety attached to the triazine group. Photophysical measurements of 2 and 4 showed broaden and strengthened absorptions in their visible spectra, while electrochemistry experiments and density functional theory calculations revealed negligible interaction between the two porphyrin units in their ground states but appropriate frontier orbital energy levels for use in dye-sensitized solar cells (DSSCs). The 2- and 4-based solar cells have been fabricated and found to exhibit power conversion efficiencies (PCEs) of 3.61% and 4.46%, respectively (under an illumination intensity of 100 mW/cm(2) with TiO2 films of 10 μm thickness). The higher PCE value of the 4-based DSSC, as revealed by photovoltaic measurements (J-V curves) and incident photon-to-current conversion efficiency (IPCE) spectra of the two cells, is attributed to its enhanced short-circuit current (J(sc)) under illumination, high open-circuit voltage (V(oc)), and fill factor (FF) values. Electrochemical impedance spectra demonstrated shorter electron-transport time (τd), longer electron lifetime (τe), and high charge recombination resistance for the 4-based cell, as well as larger dye loading onto TiO2.
两个新型卟啉-卟啉偶联物,对称的 Zn[Porph]-Zn[Porph](2)和非对称的 Zn[Porph]-H2[Porph](4),其中 Zn[Porph]和 H2[Porph]分别是 5-(4-氨基苯基)-10,15,20-三苯基卟啉的金属化和自由碱基形式,通过氰尿酰氯的逐步氨化合成,两个卟啉单元通过三嗪桥共价连接。偶联物还通过连接到三嗪基团的甘氨酸部分的末端羧酸基团官能化。2 和 4 的光物理测量显示其可见光谱的吸收加宽和增强,而电化学实验和密度泛函理论计算表明在其基态下两个卟啉单元之间几乎没有相互作用,但具有适当的前沿轨道能级,可用于染料敏化太阳能电池(DSSC)。基于 2 和 4 的太阳能电池已被制造并发现分别具有 3.61%和 4.46%的功率转换效率(PCE)(在 100 mW/cm2 的光照强度下,TiO2 薄膜厚度为 10 μm)。通过光伏测量(J-V 曲线)和两个电池的入射光子电流转换效率(IPCE)光谱揭示,基于 4 的 DSSC 的更高 PCE 值归因于其在光照下增强的短路电流(J(sc))、高开路电压(V(oc))和填充因子(FF)值。电化学阻抗谱表明,基于 4 的电池具有更短的电子传输时间(τd)、更长的电子寿命(τe)和更高的电荷复合电阻,以及更大的 TiO2 上的染料负载。