Suppr超能文献

丹麦的自行车-机动车碰撞模式:潜在类别聚类方法。

Cyclist-motorist crash patterns in Denmark: a latent class clustering approach.

机构信息

Technical University of Denmark, Department of Transport, Kgs. Lyngby, Denmark.

出版信息

Traffic Inj Prev. 2013;14(7):725-33. doi: 10.1080/15389588.2012.759654.

Abstract

OBJECTIVE

The current study aimed at uncovering patterns of cyclist-motorist crashes in Denmark and investigating their prevalence and severity. The importance of implementing clustering techniques for providing a holistic overview of vulnerable road users' crash patterns derives from the need to prioritize safety issues and to devise efficient preventive measures.

METHOD

The current study focused on cyclist-motorist crashes that occurred in Denmark during the period between 2007 and 2011. To uncover crash patterns, the current analysis applied latent class clustering, an unsupervised probabilistic clustering approach that relies on the statistical concept of likelihood and allows partial overlap across clusters.

RESULTS

The analysis yielded 13 distinguishable cyclist-motorist latent classes. Specific crash patterns for urban and rural areas were revealed. Prevalent features that allowed differentiating the latent classes were speed limit, infrastructure type, road surface conditions, number of lanes, motorized vehicle precrash maneuvers, the availability of a cycle lane, cyclist intoxication, and helmet wearing behavior. After the latent class clustering, the distribution of cyclists' injury severity within each cluster was analyzed.

CONCLUSIONS

The latent class clustering approach provided a comprehensive and clear map of cyclist-motorist crash patterns. The results are useful for prioritizing and resolving safety issues in urban areas, where there is a significant share of cyclists potentially involved in multiple hazardous situations or where extensive bicycle sharing programs are planned.

摘要

目的

本研究旨在揭示丹麦自行车与机动车事故的模式,并调查其发生率和严重程度。为了全面了解弱势道路使用者的事故模式,实施聚类技术非常重要,这是因为需要优先考虑安全问题并制定有效的预防措施。

方法

本研究关注的是 2007 年至 2011 年期间在丹麦发生的自行车与机动车事故。为了揭示事故模式,本分析采用了潜在类别聚类,这是一种无监督的概率聚类方法,依赖于似然的统计概念,并允许在聚类之间存在部分重叠。

结果

分析产生了 13 个可区分的自行车与机动车潜在类别。揭示了城市和农村地区的特定事故模式。允许区分潜在类别的常见特征包括限速、基础设施类型、路面状况、车道数量、机动车碰撞前的操作、自行车道的可用性、自行车手的醉酒状态和戴头盔行为。在潜在类别聚类之后,分析了每个聚类中自行车手伤害严重程度的分布。

结论

潜在类别聚类方法提供了自行车与机动车事故模式的全面而清晰的图谱。研究结果有助于优先处理和解决城市地区的安全问题,这些地区有很大一部分骑自行车的人可能会遇到多种危险情况,或者计划广泛推行自行车共享计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验