Dept, de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Avda, Diagonal 647 (ETSEIB), E-08028, Barcelona, Spain.
J Math Neurosci. 2013 Aug 14;3(1):13. doi: 10.1186/2190-8567-3-13.
The phase response curve (PRC) is a powerful tool to study the effect of a perturbation on the phase of an oscillator, assuming that all the dynamics can be explained by the phase variable. However, factors like the rate of convergence to the oscillator, strong forcing or high stimulation frequency may invalidate the above assumption and raise the question of how is the phase variation away from an attractor. The concept of isochrons turns out to be crucial to answer this question; from it, we have built up Phase Response Functions (PRF) and, in the present paper, we complete the extension of advancement functions to the transient states by defining the Amplitude Response Function (ARF) to control changes in the transversal variables. Based on the knowledge of both the PRF and the ARF, we study the case of a pulse-train stimulus, and compare the predictions given by the PRC-approach (a 1D map) to those given by the PRF-ARF-approach (a 2D map); we observe differences up to two orders of magnitude in favor of the 2D predictions, especially when the stimulation frequency is high or the strength of the stimulus is large. We also explore the role of hyperbolicity of the limit cycle as well as geometric aspects of the isochrons. Summing up, we aim at enlightening the contribution of transient effects in predicting the phase response and showing the limits of the phase reduction approach to prevent from falling into wrong predictions in synchronization problems.
PRC phase response curve, phase resetting curve.PRF phase response function.ARF amplitude response function.
相位反应曲线(PRC)是研究扰动对振荡器相位影响的有力工具,假设所有动力学都可以用相位变量来解释。然而,诸如向振荡器收敛的速度、强作用力或高刺激频率等因素可能会使上述假设失效,并提出这样的问题:相位变化如何远离吸引子。等时的概念对于回答这个问题至关重要;从它出发,我们构建了相位反应函数(PRF),并且在本文中,我们通过定义控制横向变量变化的振幅反应函数(ARF),将推进函数扩展到暂态。基于对 PRF 和 ARF 的了解,我们研究了脉冲序列刺激的情况,并将 PRC 方法(一维映射)给出的预测与 PRF-ARF 方法(二维映射)给出的预测进行了比较;我们观察到二维预测的优势高达两个数量级,尤其是当刺激频率较高或刺激强度较大时。我们还探讨了极限环的双曲性以及等时的几何方面的作用。总而言之,我们旨在阐明暂态效应在预测相位反应中的贡献,并展示相位简化方法在防止同步问题中出现错误预测的局限性。
PRC 相位反应曲线,相位重置曲线。PRF 相位反应函数。ARF 振幅反应函数。