Suppr超能文献

相位重置作为一种信息传递工具。

Phase-resetting as a tool of information transmission.

作者信息

Canavier Carmen C

机构信息

Department of Cell Biology and Anatomy, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA.

出版信息

Curr Opin Neurobiol. 2015 Apr;31:206-13. doi: 10.1016/j.conb.2014.12.003. Epub 2014 Dec 17.

Abstract

Models of information transmission in the brain largely rely on firing rate codes. The abundance of oscillatory activity in the brain suggests that information may be also encoded using the phases of ongoing oscillations. Sensory perception, working memory and spatial navigation have been hypothesized to use phase codes, and cross-frequency coordination and phase synchronization between brain areas have been proposed to gate the flow of information. Phase codes generally require the phase of the oscillations to be reset at specific reference points for consistent coding, and coordination between oscillators requires favorable phase resetting characteristics. Recent evidence supports a role for neural oscillations in providing temporal reference windows that allow for correct parsing of phase-coded information.

摘要

大脑中的信息传递模型很大程度上依赖于发放率编码。大脑中丰富的振荡活动表明,信息也可能利用持续振荡的相位进行编码。感觉知觉、工作记忆和空间导航被假定使用相位编码,并且已经提出脑区之间的跨频率协调和相位同步来控制信息流。相位编码通常要求振荡的相位在特定参考点重置以实现一致编码,并且振荡器之间的协调需要良好的相位重置特性。最近的证据支持神经振荡在提供时间参考窗口方面的作用,该窗口允许正确解析相位编码信息。

相似文献

1
Phase-resetting as a tool of information transmission.
Curr Opin Neurobiol. 2015 Apr;31:206-13. doi: 10.1016/j.conb.2014.12.003. Epub 2014 Dec 17.
2
Oscillations in the prefrontal cortex: a gateway to memory and attention.
Curr Opin Neurobiol. 2011 Jun;21(3):475-85. doi: 10.1016/j.conb.2011.01.004. Epub 2011 Mar 21.
3
Spatially distributed patterns of oscillatory coupling between high-frequency amplitudes and low-frequency phases in human iEEG.
Neuroimage. 2011 Jan 15;54(2):836-50. doi: 10.1016/j.neuroimage.2010.09.029. Epub 2010 Sep 17.
4
Cognitive architectures as a tool for investigating the role of oscillatory power and coherence in cognition.
Neuroimage. 2014 Jan 15;85 Pt 2:685-93. doi: 10.1016/j.neuroimage.2013.09.076. Epub 2013 Oct 14.
5
Are event-related potential components generated by phase resetting of brain oscillations? A critical discussion.
Neuroscience. 2007 Jun 8;146(4):1435-44. doi: 10.1016/j.neuroscience.2007.03.014. Epub 2007 Apr 24.
6
Power and phase properties of oscillatory neural responses in the presence of background activity.
J Comput Neurosci. 2013 Apr;34(2):337-43. doi: 10.1007/s10827-012-0424-6. Epub 2012 Sep 25.
7
Brain oscillations during spoken sentence processing.
J Cogn Neurosci. 2012 May;24(5):1149-64. doi: 10.1162/jocn_a_00144. Epub 2011 Oct 7.
8
Rhythmic fluctuations in evidence accumulation during decision making in the human brain.
Neuron. 2012 Nov 21;76(4):847-58. doi: 10.1016/j.neuron.2012.09.015.
9
Oscillations in the human brain during walking execution, imagination and observation.
Neuropsychologia. 2015 Dec;79(Pt B):223-32. doi: 10.1016/j.neuropsychologia.2015.06.039. Epub 2015 Jul 8.

引用本文的文献

1
Transcallosal generation of phase-aligned beta bursts underlies TMS-induced interhemispheric inhibition.
Imaging Neurosci (Camb). 2025 May 5;3. doi: 10.1162/imag_a_00570. eCollection 2025.
2
Theta-phase locking of single neurons during human spatial memory.
Nat Commun. 2025 Aug 11;16(1):7402. doi: 10.1038/s41467-025-62553-9.
3
Cortex-wide spatiotemporal motifs of theta oscillations are coupled to freely moving behavior.
Front Syst Neurosci. 2025 Jun 19;19:1557096. doi: 10.3389/fnsys.2025.1557096. eCollection 2025.
4
Task difficulty modulates the effect of mind wandering on phase dynamics.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2416387122. doi: 10.1073/pnas.2416387122. Epub 2025 May 30.
6
Frontal midline theta power accounts for inter-individual differences in motor learning ability.
Exp Brain Res. 2025 May 15;243(6):147. doi: 10.1007/s00221-025-07096-7.
7
Beta oscillations predict the envelope sharpness in a rhythmic beat sequence.
Sci Rep. 2025 Jan 28;15(1):3510. doi: 10.1038/s41598-025-86895-y.
9
TMS-induced phase resets depend on TMS intensity and EEG phase.
J Neural Eng. 2024 Oct 24;21(5):056035. doi: 10.1088/1741-2552/ad7f87.
10
Theta-phase locking of single neurons during human spatial memory.
bioRxiv. 2024 Jun 20:2024.06.20.599841. doi: 10.1101/2024.06.20.599841.

本文引用的文献

2
Fluctuations in oscillation frequency control spike timing and coordinate neural networks.
J Neurosci. 2014 Jul 2;34(27):8988-98. doi: 10.1523/JNEUROSCI.0261-14.2014.
3
Slow noise in the period of a biological oscillator underlies gradual trends and abrupt transitions in phasic relationships in hybrid neural networks.
PLoS Comput Biol. 2014 May 15;10(5):e1003622. doi: 10.1371/journal.pcbi.1003622. eCollection 2014 May.
4
Predicting the responses of repetitively firing neurons to current noise.
PLoS Comput Biol. 2014 May 8;10(5):e1003612. doi: 10.1371/journal.pcbi.1003612. eCollection 2014 May.
5
Effects of synaptic plasticity on phase and period locking in a network of two oscillatory neurons.
J Math Neurosci. 2014 Apr 29;4:8. doi: 10.1186/2190-8567-4-8. eCollection 2014.
6
Mechanisms of zero-lag synchronization in cortical motifs.
PLoS Comput Biol. 2014 Apr 24;10(4):e1003548. doi: 10.1371/journal.pcbi.1003548. eCollection 2014 Apr.
7
Entrainment of neural oscillations as a modifiable substrate of attention.
Trends Cogn Sci. 2014 Jun;18(6):300-9. doi: 10.1016/j.tics.2014.02.005. Epub 2014 Mar 12.
8
The spectro-contextual encoding and retrieval theory of episodic memory.
Front Hum Neurosci. 2014 Feb 18;8:75. doi: 10.3389/fnhum.2014.00075. eCollection 2014.
9
Effect of heterogeneity and noise on cross frequency phase-phase and phase-amplitude coupling.
Network. 2014 Mar-Jun;25(1-2):38-62. doi: 10.3109/0954898X.2014.886781.
10
Frequency dependence of CA3 spike phase response arising from h-current properties.
Front Cell Neurosci. 2013 Dec 25;7:263. doi: 10.3389/fncel.2013.00263. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验