Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain.
Dalton Trans. 2013 Oct 21;42(39):14240-52. doi: 10.1039/c3dt51384j.
Treatment of heteroscorpionate ligand precursors pbptamH, pbpamH, sbpamH and (S)-mbpamH with 2 equivalents of AlR3 (R = Et, Me) yielded the corresponding binuclear organoaluminium complexes [Al2R4(μ-pbptam)] (R = Me 1, Et 2), [Al2R4(μ-pbpam)] (R = Me 3, Et 4), [Al2R4(μ-sbpam)] (R = Me 5, Et 6) and [Al2R4{μ-(S)-mbpam}] (R = Me 7, Et 8). These complexes have helical chirality due to the demands of the fixed pyrazole rings. The stereoisomerism and the self-assembly processes of these helicates have been studied in some detail in solution by NMR and in the solid state by X-ray diffraction. Mixtures of M- and P-handed enantiomers and mixtures of M- and P-handed diastereoisomers were obtained when achiral (1–4) and chiral (5–8) heteroscorpionate ligands were used as scaffolds, respectively. Re-crystallization from hexane allowed us to obtain M-homochiral architectures in the solid state for the helical complexes [Al2Et4(μ-sbpam)] (6) and [Al2Et4{μ-(S)-mbpam}] (8). The reaction of heteroscorpionate ligands with 3 equivalents of AlR3 (R = Me, Et) led to the corresponding trinuclear organoaluminium complexes [Al3R7(μ3-pbptam)] (R = Me 9, Et 10), [Al3R7(μ3-pbpam)] (R = Me 11, Et 12), [Al3R7(μ3-sbpam)] (R = Me 13, Et 14) and [Al3R7{μ3-(S)-mbpam}] (R = Me 15, Et 16). The extra AlR3 molecule contributes to the formation of a diastereomeric excess of the PS helicate for complexes 15 and 16. X-ray determination of some of the helical complexes allowed us to witness a versatile and efficient self-assembly process of the building blocks (heteroscorpionate aluminium complexes) directed by noncovalent intermolecular CH–π interactions. The structures of these complexes have been determined by spectroscopic methods and the X-ray crystal structures of 2, 6, 8, and 16 have also been established. Concentration-dependent 1H pulsed field-gradient spin echo (PFGSE) NMR experiments provided evidence for the self-assembly of the single molecular species of complex 2 in solution. The degree of aggregation was calculated for complex 2, with the average number of units constituting the aggregate (N) estimated to be a maximum of 4 molecules in solution before reaching the solid state.
用 2 当量的 AlR3(R = Et,Me)处理偕异斯科啉配体前体 pbptamH、pbpamH、sbpamH 和(S)-mbpamH,得到相应的双核有机铝配合物[Al2R4(μ-pbptam)](R = Me 1,Et 2)、[Al2R4(μ-pbpam)](R = Me 3,Et 4)、[Al2R4(μ-sbpam)](R = Me 5,Et 6)和[Al2R4{μ-(S)-mbpam}](R = Me 7,Et 8)。这些配合物由于固定吡唑环的要求而具有螺旋手性。通过 NMR 在溶液中和 X 射线衍射在固态中详细研究了这些螯合物的立体异构和自组装过程。当使用非手性(1-4)和手性(5-8)偕异斯科啉配体作为支架时,分别得到 M-和 P-手性对映异构体的混合物和 M-和 P-非对映异构体的混合物。从正己烷重结晶可在固态中获得螺旋配合物[Al2Et4(μ-sbpam)](6)和[Al2Et4{μ-(S)-mbpam}](8)的 M-同手性结构。偕异斯科啉配体与 3 当量的 AlR3(R = Me,Et)反应得到相应的三核有机铝配合物[Al3R7(μ3-pbptam)](R = Me 9,Et 10)、[Al3R7(μ3-pbpam)](R = Me 11,Et 12)、[Al3R7(μ3-sbpam)](R = Me 13,Et 14)和[Al3R7{μ3-(S)-mbpam}](R = Me 15,Et 16)。额外的 AlR3 分子有助于形成 PS 螺旋对映体的非对映过量。一些螺旋配合物的 X 射线测定使我们能够观察到由非共价分子间 CH-π 相互作用指导的构建块(偕异斯科啉铝配合物)的多功能有效自组装过程。通过光谱方法确定了这些配合物的结构,还建立了 2、6、8 和 16 的 X 射线晶体结构。浓度依赖性 1H 脉冲梯度场回波(PFGSE)NMR 实验为配合物 2 在溶液中单分子物种自组装提供了证据。对于配合物 2,通过计算聚集度,估算出聚集物中构成聚集物的单元(N)的平均数量,在达到固态之前,在溶液中估计最多有 4 个分子。