The Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, HSF II, 20 Penn Street, Baltimore, Maryland 21201-1140, United States.
ACS Chem Biol. 2013 Aug 16;8(8):1794-802. doi: 10.1021/cb400165b. Epub 2013 Jun 6.
The Pseudomonas aeruginosa heme utilization (Phu) system encodes several proteins involved in the acquisition of heme as an iron source. Once internalized, heme is degraded by the iron-regulated heme oxygenase, HemO to biliverdin (BV) IXδ and β. In vitro studies have shown holo-PhuS transfers heme to the iron-regulated HemO. This protein-protein interaction is specific for HemO as PhuS does not interact with the α-regioselective heme oxygenase, BphO. Bacterial genetics and isotopic labeling ((13)C-heme) studies confirmed extracellular heme is converted to (13)C-BVIX δ and β through the catalytic action of HemO. In an effort to further understand the role of PhuS, similar studies were performed on the P. aeruginosa PAO1 ΔphuS and ΔphuS/ΔhemO strains. In contrast to wild-type strain, the absence of PhuS results in extracellular heme uptake and degradation via the catalytic action of HemO and BphO. At low heme concentrations, loss of PhuS leads to inefficient extracellular heme uptake supported by the fact the mRNA levels of PhuR, HemO, and BphO remain elevated when compared to the wild-type PAO1. On increasing extracellular heme concentrations, the elevated levels of PhuR, HemO, and BphO allow "leaky uptake" and degradation of heme via HemO and BphO. Similarly, in the ΔphuS/ΔhemO strain, the higher heme concentrations combined with elevated levels of PhuR and BphO leads to nonspecific heme uptake and degradation by BphO. Thus we propose heme flux into the cell is driven by the catalytic action of HemO with PhuS acting as a "control valve" to regulate extracellular heme flux.
铜绿假单胞菌血红素利用(Phu)系统编码了几种参与血红素作为铁源摄取的蛋白。一旦内化,血红素就会被铁调节血红素加氧酶 HemO 降解为胆绿素(BV)IXδ 和 β。体外研究表明,全血 PhuS 将血红素转移给铁调节的 HemO。这种蛋白-蛋白相互作用是 HemO 特异性的,因为 PhuS 与 α-区域选择性血红素加氧酶 BphO 没有相互作用。细菌遗传学和同位素标记((13)C-血红素)研究证实,通过 HemO 的催化作用,细胞外血红素转化为(13)C-BVIX δ 和 β。为了进一步了解 PhuS 的作用,对铜绿假单胞菌 PAO1 ΔphuS 和 ΔphuS/ΔhemO 菌株进行了类似的研究。与野生型菌株相比,缺乏 PhuS 导致细胞外血红素通过 HemO 和 BphO 的催化作用摄取和降解。在低血红素浓度下,PhuS 的缺失导致细胞外血红素摄取效率低下,这一事实表明 PhuR、HemO 和 BphO 的 mRNA 水平与野生型 PAO1 相比仍然升高。随着细胞外血红素浓度的增加,PhuR、HemO 和 BphO 的水平升高允许 HemO 和 BphO 通过“渗漏摄取”和降解血红素。同样,在 ΔphuS/ΔhemO 菌株中,较高的血红素浓度与 PhuR 和 BphO 水平升高相结合,导致 BphO 非特异性摄取和降解血红素。因此,我们提出血红素流入细胞是由 HemO 的催化作用驱动的,而 PhuS 作为“控制阀”来调节细胞外血红素通量。