Department of Chemistry, University College London , 20 Gordon Street, London, WC1H 0AJ, U.K.
J Phys Chem B. 2013 Sep 12;117(36):10652-7. doi: 10.1021/jp4058115. Epub 2013 Aug 29.
Bioactive phosphate-based glasses (PBGs) have several possible biomedical applications because of the chemical reactions they undergo with their surroundings when implanted into the body. The dissolution rate of PBGs in physiological conditions is a crucial parameter for these applications, to ensure, e.g., delivery of drugs or nutrients to the body at the correct rate. While it has been well-known that increasing the CaO content of these glasses at the expense of Na2O slows the dissolution rate, this paper provides an atomistic explanation of this for the first time. In this work, molecular dynamics simulations of five ternary P2O5-CaO-Na2O glasses reveal the structural properties at the atomic level that enhance the durability of PBGs as more Ca is added: (i) Ca binds together more fragments of the phosphate glass network than Na, (ii) Ca binds together more PO4 tetrahedra than Na, and (iii) Ca has a lower concentration of intratetrahedral phosphate bonding than Na. This behavior is rooted in the calcium ion's higher charge and field strength. These results open the path to precise control and optimization of the PBG dissolution rate for specific biomedical applications.
生物活性磷酸盐基玻璃 (PBGs) 由于在植入体内时与周围环境发生化学反应,具有多种潜在的生物医学应用。在生理条件下,PBGs 的溶解速率是这些应用的一个关键参数,以确保例如以正确的速率将药物或营养物质输送到体内。虽然众所周知,用 CaO 代替 Na2O 增加这些玻璃中的 CaO 含量会降低溶解速率,但本文首次从原子水平对此进行了解释。在这项工作中,对五种三元 P2O5-CaO-Na2O 玻璃进行了分子动力学模拟,揭示了在原子水平上增强 PBG 耐久性的结构特性,随着 Ca 的添加量增加:(i) Ca 比 Na 更能将磷酸盐玻璃网络的更多片段结合在一起,(ii) Ca 比 Na 更能将更多的 PO4 四面体结合在一起,以及 (iii) Ca 中四面体内磷酸盐键的浓度比 Na 低。这种行为源于钙离子的更高电荷和场强。这些结果为针对特定生物医学应用的 PBG 溶解速率的精确控制和优化开辟了道路。