Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá PR, Brazil.
J Chem Phys. 2013 Aug 14;139(6):064107. doi: 10.1063/1.4817774.
An integro-differential diffusion equation with linear force, based on the continuous time random walk model, is considered. The equation generalizes the ordinary and fractional diffusion equations. Analytical expressions for transition probability density, mean square displacement, and intermediate scattering function are presented. The mean square displacement and intermediate scattering function can fit well the simulation data of the temperature-dependent translational dynamics of nitrogen atoms of elastin for a wide range of temperatures and various scattering vectors. Moreover, the numerical results are also compared with those of a fractional diffusion equation.
考虑了一个基于连续时间随机行走模型的具有线性力的积分微分扩散方程。该方程推广了普通和分数扩散方程。给出了转移概率密度、均方位移和中间散射函数的解析表达式。均方位移和中间散射函数可以很好地拟合弹性蛋白中氮原子的温度相关平移动力学的模拟数据,温度范围很宽,散射矢量也多种多样。此外,还将数值结果与分数扩散方程的结果进行了比较。