Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067, PR China.
J Colloid Interface Sci. 2013 Oct 15;408:33-42. doi: 10.1016/j.jcis.2013.07.040. Epub 2013 Jul 30.
In order to develop efficient visible light driven photocatalysts for environmental application, novel N-doped (BiO)2CO3 honeycomb-like hierarchical microspheres were fabricated by an one-pot and template-free hydrothermal method, firstly using bismuth citrate and dicyandiamide as precursors. The as-prepared samples were characterized by XRD, SEM, FT-IR, PL, XPS, and UV-vis DRS in detail. The results indicated that the crystal structure and morphology of the samples can be tuned by hydrothermal reaction temperature. The source of nitrogen doping was from dicyandiamide, which also played a key role in hydrolyzing bismuth citrate to produce bismuth ions and citrate ions. The ammonium ions from the decomposition of dicyandiamide reacted with bismuth ions and carbonate ions from decomposition of citrate ions, producing in situ N-doped (BiO)2CO3 microspheres. The doped nitrogen substituted for oxygen in (BiO)2CO3 and was responsible for the band gap reduction of N-doped (BiO)2CO3. The as-prepared N-doped (BiO)2CO3 microspheres were applied for removal of NO in air and exhibited excellent visible light activity, exceeding that of N-doped TiO2 and C-doped TiO2. Time-dependent evolutions of crystal structure, morphology, chemical composition, and optical property were investigated systematically to reveal the growth mechanism of the honeycomb-like (BiO)2CO3 microspheres. The growth process involved multiple steps, including reaction, nucleation, crystallization, aggregation, and recrystallization. The proposed growth mechanism could provide new insights into the design and fabrication of hierarchical materials with advanced properties.
为了开发用于环境应用的高效可见光驱动光催化剂,我们通过一种无模板的一步水热法,首先使用柠檬酸铋和双氰胺作为前体制备了新型 N 掺杂(BiO)2CO3 蜂窝状分级微球。详细地通过 XRD、SEM、FT-IR、PL、XPS 和 UV-vis DRS 对所制备的样品进行了表征。结果表明,样品的晶体结构和形态可以通过水热反应温度进行调节。氮掺杂的来源是双氰胺,它在水解柠檬酸铋产生铋离子和柠檬酸根离子方面也起着关键作用。双氰胺分解产生的铵离子与柠檬酸根离子分解产生的铋离子和碳酸根离子反应,生成原位 N 掺杂(BiO)2CO3 微球。掺杂的氮取代了(BiO)2CO3 中的氧,导致 N 掺杂(BiO)2CO3 的带隙减小。所制备的 N 掺杂(BiO)2CO3 微球用于去除空气中的 NO,并表现出优异的可见光活性,超过了 N 掺杂 TiO2 和 C 掺杂 TiO2。系统地研究了晶体结构、形态、化学成分和光学性质的时间依赖性演化,以揭示蜂窝状(BiO)2CO3 微球的生长机制。生长过程涉及多个步骤,包括反应、成核、结晶、聚集和再结晶。所提出的生长机制可以为具有先进性能的分级材料的设计和制造提供新的见解。