Center for High Performance Simulations-CHiPS and Department of Physics, North Carolina State University, Raleigh, North Carolina, United States of America.
PLoS Comput Biol. 2013;9(8):e1003160. doi: 10.1371/journal.pcbi.1003160. Epub 2013 Aug 8.
The subtle effects of DNA-protein recognition are illustrated in the homeodomain fold. This is one of several small DNA binding motifs that, in spite of limited DNA binding specificity, adopts crucial, specific roles when incorporated in a transcription factor. The homeodomain is composed of a 3-helix domain and a mobile N-terminal arm. Helix 3 (the recognition helix) interacts with the DNA bases through the major groove, while the N-terminal arm becomes ordered upon binding a specific sequence through the minor groove. Although many structural studies have characterized the DNA binding properties of homeodomains, the factors behind the binding specificity are still difficult to elucidate. A crystal structure of the Pdx1 homeodomain bound to DNA (PDB 2H1K) obtained previously in our lab shows two complexes with differences in the conformation of the N-terminal arm, major groove contacts, and backbone contacts, raising new questions about the DNA recognition process by homeodomains. Here, we carry out fully atomistic Molecular Dynamics simulations both in crystal and aqueous environments in order to elucidate the nature of the difference in binding contacts. The crystal simulations reproduce the X-ray experimental structures well. In the absence of crystal packing constraints, the differences between the two complexes increase during the solution simulations. Thus, the conformational differences are not an artifact of crystal packing. In solution, the homeodomain with a disordered N-terminal arm repositions to a partially specific orientation. Both the crystal and aqueous simulations support the existence of different stable binding conformers identified in the original crystallographic data with different degrees of specificity. We propose that protein-protein and protein-DNA interactions favor a subset of the possible conformations. This flexibility in DNA binding may facilitate multiple functions for the same transcription factor.
DNA-蛋白质识别的微妙效应在同源域折叠中得到了体现。这是几个小型 DNA 结合基序之一,尽管其 DNA 结合特异性有限,但在转录因子中被整合后,仍能发挥关键的、特异性的作用。同源域由 3 个螺旋域和一个可移动的 N 端臂组成。螺旋 3(识别螺旋)通过大沟与 DNA 碱基相互作用,而 N 端臂在结合特定序列时通过小沟变得有序。尽管许多结构研究已经描述了同源域的 DNA 结合特性,但结合特异性背后的因素仍然难以阐明。我们实验室之前获得的 Pdx1 同源域与 DNA 结合的晶体结构(PDB 2H1K)显示了两个复合物,它们在 N 端臂构象、大沟接触和骨架接触方面存在差异,这引发了关于同源域 DNA 识别过程的新问题。在这里,我们在晶体和水相环境中进行全原子分子动力学模拟,以阐明结合接触差异的性质。晶体模拟很好地再现了 X 射线实验结构。在没有晶体堆积约束的情况下,两个复合物之间的差异在溶液模拟过程中增加。因此,构象差异不是晶体堆积的人为产物。在溶液中,无序的 N 端臂的同源域重新定位到部分特异性取向。晶体和水相模拟都支持在原始晶体学数据中识别出不同的稳定结合构象的存在,其特异性程度不同。我们提出,蛋白质-蛋白质和蛋白质-DNA 相互作用有利于可能构象的子集。这种 DNA 结合的灵活性可能促进相同转录因子的多种功能。