Suppr超能文献

T 细胞受体可变区残基对肽-HLA-A2 复合物结合贡献的可塑性。

Plasticity in the contribution of T cell receptor variable region residues to binding of peptide-HLA-A2 complexes.

机构信息

Department of Biochemistry, University of Illinois, 600 South Mathews Avenue, Urbana, IL 61801, USA.

出版信息

J Mol Biol. 2013 Nov 15;425(22):4496-507. doi: 10.1016/j.jmb.2013.08.007. Epub 2013 Aug 14.

Abstract

One hypothesis accounting for major histocompatibility complex (MHC) restriction by T cell receptors (TCRs) holds that there are several evolutionary conserved residues in TCR variable regions that contact MHC. While this "germline codon" hypothesis is supported by various lines of evidence, it has been difficult to test. The difficulty stems in part from the fact that TCRs exhibit low affinities for pep/MHC, thus limiting the range of binding energies that can be assigned to these key interactions using mutational analyses. To measure the magnitude of binding energies involved, here we used high-affinity TCRs engineered by mutagenesis of CDR3. The TCRs included a high-affinity, MART-1/HLA-A2-specific single-chain TCR and two other high-affinity TCRs that all contain the same Vα region and recognize the same MHC allele (HLA-A2), with different peptides and Vβ regions. Mutational analysis of residues in CDR1 and CDR2 of the three Vα2 regions showed the importance of the key germline codon residue Y51. However, two other proposed key residues showed significant differences among the TCRs in their relative contributions to binding. With the use of single-position, yeast-display libraries in two of the key residues, MART-1/HLA-A2 selections also revealed strong preferences for wild-type germline codon residues, but several alternative residues could also accommodate binding and, hence, MHC restriction. Thus, although a single residue (Y51) could account for a proportion of the energy associated with positive selection (i.e., MHC restriction), there is significant plasticity in requirements for particular side chains in CDR1 and CDR2 and in their relative binding contributions among different TCRs.

摘要

一种解释 T 细胞受体 (TCR) 对主要组织相容性复合体 (MHC) 限制的假设认为,TCR 可变区中有几个进化保守的残基与 MHC 接触。虽然这个“胚系密码子”假说得到了各种证据的支持,但很难进行测试。这种困难部分源于 TCR 对 pep/MHC 的亲和力较低,从而限制了使用突变分析分配给这些关键相互作用的结合能范围。为了测量涉及的结合能的大小,我们在这里使用通过 CDR3 突变工程设计的高亲和力 TCR。这些 TCR 包括一种高亲和力的、MART-1/HLA-A2 特异性的单链 TCR 和另外两种高亲和力的 TCR,它们都含有相同的 Vα 区,识别相同的 MHC 等位基因(HLA-A2),但肽和 Vβ 区不同。对三个 Vα2 区的 CDR1 和 CDR2 中的残基进行突变分析表明,关键胚系密码子残基 Y51 的重要性。然而,另外两个被提议的关键残基在它们对结合的相对贡献方面在 TCR 之间表现出显著差异。在两个关键残基中使用单一位点酵母展示文库进行 MART-1/HLA-A2 选择也揭示了对野生型胚系密码子残基的强烈偏好,但也可以容纳几种替代残基的结合,因此 MHC 限制。因此,尽管单个残基(Y51)可以解释与正选择(即 MHC 限制)相关的能量的一部分,但在 CDR1 和 CDR2 中特定侧链的要求以及不同 TCR 之间相对结合贡献方面存在显著的可塑性。

相似文献

1
Plasticity in the contribution of T cell receptor variable region residues to binding of peptide-HLA-A2 complexes.
J Mol Biol. 2013 Nov 15;425(22):4496-507. doi: 10.1016/j.jmb.2013.08.007. Epub 2013 Aug 14.
2
Subtle changes at the variable domain interface of the T-cell receptor can strongly increase affinity.
J Biol Chem. 2018 Feb 2;293(5):1820-1834. doi: 10.1074/jbc.M117.814152. Epub 2017 Dec 11.
3
T-cell receptor (TCR)-peptide specificity overrides affinity-enhancing TCR-major histocompatibility complex interactions.
J Biol Chem. 2014 Jan 10;289(2):628-38. doi: 10.1074/jbc.M113.522110. Epub 2013 Nov 6.
4
Structural basis for ineffective T-cell responses to MHC anchor residue-improved "heteroclitic" peptides.
Eur J Immunol. 2015 Feb;45(2):584-91. doi: 10.1002/eji.201445114. Epub 2014 Dec 28.
5
High-affinity, peptide-specific T cell receptors can be generated by mutations in CDR1, CDR2 or CDR3.
J Mol Biol. 2005 Feb 11;346(1):223-39. doi: 10.1016/j.jmb.2004.11.057. Epub 2004 Dec 22.
8
Specific roles of each TCR hemichain in generating functional chain-centric TCR.
J Immunol. 2015 Apr 1;194(7):3487-500. doi: 10.4049/jimmunol.1401717. Epub 2015 Feb 20.
9
Structural basis for clonal diversity of the human T-cell response to a dominant influenza virus epitope.
J Biol Chem. 2017 Nov 10;292(45):18618-18627. doi: 10.1074/jbc.M117.810382. Epub 2017 Sep 20.
10
Evolutionarily conserved amino acids that control TCR-MHC interaction.
Annu Rev Immunol. 2008;26:171-203. doi: 10.1146/annurev.immunol.26.021607.090421.

引用本文的文献

1
Engineering Proteins by Combining Deep Mutational Scanning and Yeast Display.
Methods Mol Biol. 2022;2491:117-142. doi: 10.1007/978-1-0716-2285-8_7.
2
T-cell Receptors Engineered for Peptide Specificity Can Mediate Optimal T-cell Activity without Self Cross-Reactivity.
Cancer Immunol Res. 2019 Dec;7(12):2025-2035. doi: 10.1158/2326-6066.CIR-19-0035. Epub 2019 Sep 23.
3
High-Throughput Stability Screening of Neoantigen/HLA Complexes Improves Immunogenicity Predictions.
Cancer Immunol Res. 2019 Jan;7(1):50-61. doi: 10.1158/2326-6066.CIR-18-0395. Epub 2018 Nov 13.
4
Molecular properties of gp100-reactive T-cell receptors drive the cytokine profile and antitumor efficacy of transgenic host T cells.
Pigment Cell Melanoma Res. 2019 Jan;32(1):68-78. doi: 10.1111/pcmr.12724. Epub 2018 Aug 13.
5
Comparison of T Cell Activities Mediated by Human TCRs and CARs That Use the Same Recognition Domains.
J Immunol. 2018 Feb 1;200(3):1088-1100. doi: 10.4049/jimmunol.1700236. Epub 2017 Dec 29.
6
Subtle changes at the variable domain interface of the T-cell receptor can strongly increase affinity.
J Biol Chem. 2018 Feb 2;293(5):1820-1834. doi: 10.1074/jbc.M117.814152. Epub 2017 Dec 11.
8
An Engineered Switch in T Cell Receptor Specificity Leads to an Unusual but Functional Binding Geometry.
Structure. 2016 Jul 6;24(7):1142-1154. doi: 10.1016/j.str.2016.04.011. Epub 2016 May 26.
9
T Cell Receptor Engineering and Analysis Using the Yeast Display Platform.
Methods Mol Biol. 2015;1319:95-141. doi: 10.1007/978-1-4939-2748-7_6.
10
TCR affinity for p/MHC formed by tumor antigens that are self-proteins: impact on efficacy and toxicity.
Curr Opin Immunol. 2015 Apr;33:16-22. doi: 10.1016/j.coi.2015.01.003. Epub 2015 Jan 22.

本文引用的文献

1
Increased Peptide Contacts Govern High Affinity Binding of a Modified TCR Whilst Maintaining a Native pMHC Docking Mode.
Front Immunol. 2013 Jun 26;4:168. doi: 10.3389/fimmu.2013.00168. eCollection 2013.
3
The T-cell receptor is not hardwired to engage MHC ligands.
Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):E3111-8. doi: 10.1073/pnas.1210882109. Epub 2012 Oct 17.
4
Design of T-cell receptor libraries with diverse binding properties to examine adoptive T-cell responses.
Gene Ther. 2013 Jun;20(6):634-44. doi: 10.1038/gt.2012.80. Epub 2012 Oct 11.
5
Structural and dynamic control of T-cell receptor specificity, cross-reactivity, and binding mechanism.
Immunol Rev. 2012 Nov;250(1):10-31. doi: 10.1111/j.1600-065X.2012.01165.x.
6
Structural insights into the editing of germ-line-encoded interactions between T-cell receptor and MHC class II by Vα CDR3.
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14960-5. doi: 10.1073/pnas.1207186109. Epub 2012 Aug 28.
7
Cutting edge: Evidence for a dynamically driven T cell signaling mechanism.
J Immunol. 2012 Jun 15;188(12):5819-23. doi: 10.4049/jimmunol.1200952. Epub 2012 May 18.
8
Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity, specificity, and binding mechanism.
J Mol Biol. 2011 Dec 2;414(3):385-400. doi: 10.1016/j.jmb.2011.10.006. Epub 2011 Oct 12.
9
TCRs used in cancer gene therapy cross-react with MART-1/Melan-A tumor antigens via distinct mechanisms.
J Immunol. 2011 Sep 1;187(5):2453-63. doi: 10.4049/jimmunol.1101268. Epub 2011 Jul 27.
10
Identification and engineering of human variable regions that allow expression of stable single-chain T cell receptors.
Protein Eng Des Sel. 2011 Apr;24(4):361-72. doi: 10.1093/protein/gzq113. Epub 2010 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验