Suppr超能文献

高时间分辨率 DCE-MRI 半定量分析早期评估新辅助化疗乳腺癌的疗效:初步结果。

Early assessment of breast cancer response to neoadjuvant chemotherapy by semi-quantitative analysis of high-temporal resolution DCE-MRI: preliminary results.

机构信息

Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN; Institute of Imaging Science, Vanderbilt University, Nashville, TN; Vanderbilt-Ingram Center, Vanderbilt University, Nashville, TN.

出版信息

Magn Reson Imaging. 2013 Nov;31(9):1457-64. doi: 10.1016/j.mri.2013.07.002. Epub 2013 Aug 15.

Abstract

PURPOSE

To evaluate whether semi-quantitative analysis of high temporal resolution dynamic contrast-enhanced MRI (DCE-MRI) acquired early in treatment can predict the response of locally advanced breast cancer (LABC) to neoadjuvant chemotherapy (NAC).

MATERIALS AND METHODS

As part of an IRB-approved prospective study, 21 patients with LABC provided informed consent and underwent high temporal resolution 3T DCE-MRI before and after 1cycle of NAC. Using measurements performed by two radiologists, the following parameters were extracted for lesions at both examinations: lesion size (short and long axes, in both early and late phases of enhancement), radiologist's subjective assessment of lesion enhancement, and percentages of voxels within the lesion demonstrating progressive, plateau, or washout kinetics. The latter data were calculated using two filters, one selecting for voxels enhancing ≥50% over baseline and one for voxels enhancing ≥100% over baseline. Pretreatment imaging parameters and parameter changes following cycle 1 of NAC were evaluated for their ability to discriminate patients with an eventual pathological complete response (pCR).

RESULTS

All 21 patients completed NAC followed by surgery, with 9 patients achieving a pCR. No pretreatment imaging parameters were predictive of pCR. However, change after cycle 1 of NAC in percentage of voxels demonstrating washout kinetics with a 100% enhancement filter discriminated patients with an eventual pCR with an area under the receiver operating characteristic curve (AUC) of 0.77. Changes in other parameters, including lesion size, did not predict pCR.

CONCLUSION

Semi-quantitative analysis of high temporal resolution DCE-MRI in patients with LABC can discriminate patients with an eventual pCR after one cycle of NAC.

摘要

目的

评估治疗早期高时间分辨率动态对比增强磁共振成像(DCE-MRI)的半定量分析是否能预测局部晚期乳腺癌(LABC)对新辅助化疗(NAC)的反应。

材料与方法

作为一项经机构审查委员会批准的前瞻性研究的一部分,21 例 LABC 患者提供了知情同意,并在接受 1 个周期 NAC 前后进行了 3T 高时间分辨率 DCE-MRI 检查。使用两位放射科医生进行的测量,从两次检查中提取了病变的以下参数:病变大小(早期和晚期增强时的短轴和长轴)、放射科医生对病变增强的主观评估以及病变内表现出渐进性、平台期或洗脱动力学的体素百分比。后者的数据使用两个滤波器进行计算,一个用于选择增强≥基线 50%的体素,另一个用于选择增强≥基线 100%的体素。评估治疗前成像参数和 NAC 第 1 周期后参数变化对最终病理完全缓解(pCR)患者的鉴别能力。

结果

所有 21 例患者均完成 NAC 后手术,9 例患者达到 pCR。没有治疗前的成像参数可以预测 pCR。然而,第 1 周期 NAC 后,以 100%增强滤波器显示洗脱动力学的体素百分比的变化可以区分最终达到 pCR 的患者,其受试者工作特征曲线(ROC)下面积(AUC)为 0.77。其他参数的变化,包括病变大小,不能预测 pCR。

结论

LABC 患者高时间分辨率 DCE-MRI 的半定量分析可以区分接受 1 个周期 NAC 后最终达到 pCR 的患者。

相似文献

2
Early Prediction of Response to Neoadjuvant Chemotherapy Using Dynamic Contrast-Enhanced MRI and Ultrasound in Breast Cancer.
Korean J Radiol. 2018 Jul-Aug;19(4):682-691. doi: 10.3348/kjr.2018.19.4.682. Epub 2018 Jun 14.

引用本文的文献

3
Systematic evaluation of MRI-based characterization of tumor-associated vascular morphology and hemodynamics via a dynamic digital phantom.
J Med Imaging (Bellingham). 2024 Mar;11(2):024002. doi: 10.1117/1.JMI.11.2.024002. Epub 2024 Mar 8.
6
A novel CNN algorithm for pathological complete response prediction using an I-SPY TRIAL breast MRI database.
Magn Reson Imaging. 2020 Nov;73:148-151. doi: 10.1016/j.mri.2020.08.021. Epub 2020 Sep 2.
7
Assessment of tumor treatment response using active contrast encoding (ACE)-MRI: Comparison with conventional DCE-MRI.
PLoS One. 2020 Jun 10;15(6):e0234520. doi: 10.1371/journal.pone.0234520. eCollection 2020.

本文引用的文献

4
Predictive value of neoadjuvant chemotherapy failure in breast cancer using FDG-PET after the first course.
Breast Cancer Res Treat. 2012 Jan;131(2):517-25. doi: 10.1007/s10549-011-1832-4. Epub 2011 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验