Suppr超能文献

机器学习联合乳腺多参数磁共振成像对乳腺癌新辅助化疗早期疗效及生存预后评估的影响。

Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.

机构信息

Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-Guided Therapy.

Department of Pathology.

出版信息

Invest Radiol. 2019 Feb;54(2):110-117. doi: 10.1097/RLI.0000000000000518.

Abstract

PURPOSE

The aim of this study was to assess the potential of machine learning with multiparametric magnetic resonance imaging (mpMRI) for the early prediction of pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) and of survival outcomes in breast cancer patients.

MATERIALS AND METHODS

This institutional review board-approved prospective study included 38 women (median age, 46.5 years; range, 25-70 years) with breast cancer who were scheduled for NAC and underwent mpMRI of the breast at 3 T with dynamic contrast-enhanced (DCE), diffusion-weighted imaging (DWI), and T2-weighted imaging before and after 2 cycles of NAC. For each lesion, 23 features were extracted: qualitative T2-weighted and DCE-MRI features according to BI-RADS (Breast Imaging Reporting and Data System), quantitative pharmacokinetic DCE features (mean plasma flow, volume distribution, mean transit time), and DWI apparent diffusion coefficient (ADC) values. To apply machine learning to mpMRI, 8 classifiers including linear support vector machine, linear discriminant analysis, logistic regression, random forests, stochastic gradient descent, decision tree, adaptive boosting, and extreme gradient boosting (XGBoost) were used to rank the features. Histopathologic residual cancer burden (RCB) class (with RCB 0 being a pCR), recurrence-free survival (RFS), and disease-specific survival (DSS) were used as the standards of reference. Classification accuracy with area under the receiving operating characteristic curve (AUC) was assessed using all the extracted qualitative and quantitative features for pCR as defined by RCB class, RFS, and DSS using recursive feature elimination. To overcome overfitting, 4-fold cross-validation was used.

RESULTS

Machine learning with mpMRI achieved stable performance as shown by mean classification accuracies for the prediction of RCB class (AUC, 0.86) and DSS (AUC, 0.92) based on XGBoost and the prediction of RFS (AUC, 0.83) with logistic regression. The XGBoost classifier achieved the most stable performance with high accuracies compared with other classifiers. The most relevant features for the prediction of RCB class were as follows: changes in lesion size, complete pattern of shrinkage, and mean transit time on DCE-MRI; minimum ADC on DWI; and peritumoral edema on T2-weighted imaging. The most relevant features for prediction of RFS were as follows: volume distribution, mean plasma flow, and mean transit time; DCE-MRI lesion size; minimum, maximum, and mean ADC with DWI. The most relevant features for prediction of DSS were as follows: lesion size, volume distribution, and mean plasma flow on DCE-MRI, and maximum ADC with DWI.

CONCLUSIONS

Machine learning with mpMRI of the breast enables early prediction of pCR to NAC as well as survival outcomes in breast cancer patients with high accuracy and thus may provide valuable predictive information to guide treatment decisions.

摘要

目的

本研究旨在评估机器学习结合多参数磁共振成像(mpMRI)在预测新辅助化疗(NAC)后病理完全缓解(pCR)和乳腺癌患者生存结局方面的潜力。

材料与方法

本研究经机构审查委员会批准,前瞻性纳入 38 例拟行 NAC 且在接受 2 个周期 NAC 前后于 3T 行乳腺 mpMRI 的乳腺癌女性患者,检查序列包括动态对比增强(DCE)、扩散加权成像(DWI)和 T2 加权成像。对每个病灶提取 23 个特征:根据 BI-RADS(乳腺影像报告和数据系统)的定性 T2 加权和 DCE-MRI 特征、定量药代动力学 DCE 特征(平均血浆流量、容积分布、平均通过时间)和 DWI 表观扩散系数(ADC)值。为了将机器学习应用于 mpMRI,使用 8 种分类器,包括线性支持向量机、线性判别分析、逻辑回归、随机森林、随机梯度下降、决策树、自适应增强和极端梯度提升(XGBoost),对特征进行排序。组织学残留癌负荷(RCB)分级(RCB 0 级为 pCR)、无复发生存率(RFS)和疾病特异性生存率(DSS)被用作参考标准。使用递归特征消除法,基于 RCB 分级、RFS 和 DSS 对所有提取的定性和定量特征进行分类,以评估 XGBoost 和逻辑回归预测 pCR 的受试者工作特征曲线下面积(AUC)的分类准确性。为了克服过拟合,采用 4 折交叉验证。

结果

基于 XGBoost 预测 RCB 分级(AUC,0.86)和 DSS(AUC,0.92)、基于逻辑回归预测 RFS(AUC,0.83),mpMRI 联合机器学习实现了稳定的性能,分类准确率稳定。XGBoost 分类器与其他分类器相比,具有最高的稳定性和高精度。预测 RCB 分级的最相关特征如下:DCE-MRI 上病灶大小的变化、完全收缩模式和平均通过时间;DWI 上的最小 ADC 值;T2 加权成像上的瘤周水肿。预测 RFS 的最相关特征如下:容积分布、平均血浆流量和平均通过时间;DCE-MRI 上的病灶大小;DWI 上的最小、最大和平均 ADC 值。预测 DSS 的最相关特征如下:DCE-MRI 上的病灶大小、容积分布和平均血浆流量,以及 DWI 上的最大 ADC 值。

结论

乳腺癌的 mpMRI 联合机器学习能够早期预测 NAC 后的 pCR 和乳腺癌患者的生存结局,具有较高的准确性,因此可能为指导治疗决策提供有价值的预测信息。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验