Suppr超能文献

基于 ESB 的传感器网络集成,用于预测电力供应系统的脆弱性。

ESB-based Sensor Web integration for the prediction of electric power supply system vulnerability.

机构信息

Faculty of Electronic Engineering, University of Niš, Niš 18000, Serbia.

出版信息

Sensors (Basel). 2013 Aug 15;13(8):10623-58. doi: 10.3390/s130810623.

Abstract

Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application.

摘要

供电公司越来越依赖企业 IT 系统来提供对配电网络状态的全面了解。在整个网络中,企业 IT 系统从各种计量设备中收集数据。这些数据可有效地用于预测供电网络的脆弱性。本文旨在介绍我们开发的基于企业服务总线 (ESB) 的传感器网络集成解决方案,其目的是能够预测特定网络元件的故障概率,从而预测供电网络的脆弱性。我们将举例说明其用法,并在从两个不同供电公司收集的数据上演示我们的脆弱性预测模型。所提出的解决方案是对基于 GinisSense 传感器网络的架构的扩展,该架构用于根据来自异构数据源的数据进行收集、处理、分析、决策和警报。在这种情况下,GinisSense 已升级为能够在 ESB 环境中运行,并结合传感器网络和 GIS 技术,以实现对电力供应系统脆弱性的预测。除了电气值外,该解决方案还从现有供电网络基础设施中安装的附加传感器收集环境值。GinisSense 根据自适应的综合数据融合模型对收集的数据进行聚合,并对聚合后的数据应用决策逻辑。通过专门的 Web GIS 应用程序向最终用户可视化检测到的漏洞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/585d/3812621/adc20f607827/sensors-13-10623f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验