Suppr超能文献

单目三维步态跟踪在监控场景中。

Monocular 3-D gait tracking in surveillance scenes.

出版信息

IEEE Trans Cybern. 2014 Jun;44(6):894-909. doi: 10.1109/TCYB.2013.2275731. Epub 2013 Aug 15.

Abstract

Gait recognition can potentially provide a noninvasive and effective biometric authentication from a distance. However, the performance of gait recognition systems will suffer in real surveillance scenarios with multiple interacting individuals and where the camera is usually placed at a significant angle and distance from the floor. We present a methodology for view-invariant monocular 3-D human pose tracking in man-made environments in which we assume that observed people move on a known ground plane. First, we model 3-D body poses and camera viewpoints with a low dimensional manifold and learn a generative model of the silhouette from this manifold to a reduced set of training views. During the online stage, 3-D body poses are tracked using recursive Bayesian sampling conducted jointly over the scene's ground plane and the pose-viewpoint manifold. For each sample, the homography that relates the corresponding training plane to the image points is calculated using the dominant 3-D directions of the scene, the sampled location on the ground plane and the sampled camera view. Each regressed silhouette shape is projected using this homographic transformation and is matched in the image to estimate its likelihood. Our framework is able to track 3-D human walking poses in a 3-D environment exploring only a 4-D state space with success. In our experimental evaluation, we demonstrate the significant improvements of the homographic alignment over a commonly used similarity transformation and provide quantitative pose tracking results for the monocular sequences with a high perspective effect from the CAVIAR dataset.

摘要

步态识别可以从远处提供一种非侵入式和有效的生物特征认证。然而,在有多个相互作用的个体的实际监控场景中,并且相机通常放置在离地面有很大角度和距离的位置,步态识别系统的性能将会受到影响。我们提出了一种在人为环境中进行视图不变的单目 3D 人体姿态跟踪的方法,其中我们假设观察到的人在已知的地面上移动。首先,我们使用低维流形来建模 3D 人体姿态和摄像机视点,并从该流形学习到一组训练视图的轮廓生成模型。在在线阶段,使用在场景的地面和姿态-视点流形上进行联合的递归贝叶斯采样来跟踪 3D 人体姿态。对于每个样本,使用场景的主导 3D 方向、采样的地面位置和采样的摄像机视图计算将对应训练平面与图像点相关联的单应变换。使用这个单应变换投影每个回归的轮廓形状,并在图像中进行匹配以估计其可能性。我们的框架能够成功地在仅探索 4D 状态空间的 3D 环境中跟踪 3D 人体行走姿态。在我们的实验评估中,我们证明了单应对齐相对于常用的相似性变换的显著改进,并为 CAVIAR 数据集的高透视效果的单目序列提供了定量的姿态跟踪结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验